Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Issue Date
Now showing 1 - 20 of 81
- Results Per Page
- Sort Options
Article Citation - WoS: 9Citation - Scopus: 12A New Triangular Composite Shell Element With Damping Capability(Elsevier, 2014) Körük, Hasan; Şanlıtürk, Kenan YüceThis paper presents a new triangular composite shell element with damping capability. Formulation of the composite triangular shell element is based on stacking individual homogeneous triangular shell ele- ments on top of each other. The homogeneous shell element is an assembly of a triangular membrane element with drilling degrees of freedoms and a plate element. Damping capability is provided by means of complex element stiffness matrix of individual flat layers of the composite element. These elements with damping capability allow modelling general structures with damping treatments. A few test cases are modelled using triangular finite element developed here and the results of the complex eigenvalue analyses are compared with those of the quadrilateral shell elements proposed recently. The results obtained using the presented triangular and previous quadrilateral composite elements are also com- pared with those based on modal strain energy method and experimental results. Comparisons of the experimental and the theoretical results confirm that the modal properties including modal damping lev- els of structures with damping treatments can be predicted with high accuracy using the proposed finite element.Article Citation - WoS: 11Citation - Scopus: 17Quantification and Minimization of Sensor Effects on Modal Parameters of Lightweight Structures(JVE INTERNATIONAL LTD., 2014) Körük, HasanThis paper aims to quantify the adverse effects of contact type sensors on modal parameters of lightweight structures and to present a practical way for identification of modal parameters of structures with minimal sensor effects. The adverse effects of a contact type sensor on natural frequencies, damping levels and mode shapes are explored using the theoretical model of a typical beam-like sample carrying a sensor and a controlled experimental study based on measurement of frequency response functions using non-contact excitation and response sensors. The half-power and circle fit modal identification methods are used to extract modal parameter from measured data. The experimental and theoretical modal analysis results are evaluated, and a practical methodology based on classical acoustic and vibration frequency response functions is suggested to identify modal loss factors and natural frequencies of lightweight structures with minimal sensor effects.Article Citation - WoS: 1Citation - Scopus: 11441. Quantification of the Flow Noise in Household Refrigerators(JVE INTERNATIONAL LTD., 2014) Körük, Hasan; Arısoy, Ahmet; Bilgin, NecatiThe flow noise in household refrigerators is quantified in this study. First, the sound pressure measurements in a quiet room using typical household refrigerators are conducted and the noise characteristics of the refrigerators are presented. Then, the flow noise in household refrigerators is quantified using the results of the overall analysis and Fourier transform of the measured sound pressure data. After that, the flow noise in household refrigerators is quantified using the sound pressure measurements conducted using a specially designed test rig. The frequency characteristics of the flow noise in household refrigerators are also explored and the contribution of the flow noise is identified.Article Citation - WoS: 54Citation - Scopus: 63An Assessment of the Performance of Impedance Tube Method(Institute of Noise Control Engineering, 2014) Hasan KörükThe impedance tube method is widely used for measuring sound absorption (or reflection) coefficients of acoustic materials as a function of frequency. However, the sound absorption coefficients obtained using the impedance tube method may have some variations due to the dimensions (limits) of an impedance tube, sample preparation and sample mounting. This paper assesses the performance of the two-microphone impedance tube method as a function of frequency for different tube dimensions and materials and presents suggestions for increasing the reliability and repeatability of impedance tube measurements. First, after summarizing a systematic way for measuring acoustic transfer functions, sound absorption coefficients of a variety of materials ranging from conventional absorbing acoustic materials to samples with thin films are measured using two tubes with different tube diameter and microphone spacing. Uncertainty of sound absorption coefficients for various materials is discussed, and the frequency limits of impedance tubes are assessed. Then, a method for minimizing uncertainty due to sample mounting is proposed and the main findings are discussed.Conference Object The Direct Numerical Simulation of the Deflected Wake Phenomenon Around a Plunging Naca0012 Airfoil at Low Reynolds Numbers(2015) Yılmaz, S.B.; Sahin, Mehmet; Ünal, M. Fevzi...Editorial 17th International Conference on Mechatronics Technology, October 15-18, 2013, Jeju Island, Korea(Elsevier, 2015) Hwang, Sung Ho; Kim, Joon-wan; Dorantes-Gonzalez, Dante JorgeIn recent years, Mechatronics has gained a lot of interest as more applications have been introduced to industry and society. The need for new mechatronic technologies in the form of advanced production systems, mechatronic devices, control systems, robotics, biomedical applications, MEMS, and measurement systems, among others, is very much required in improving productivity and competitiveness in many industries. Thus, this conference was organized to address the state-of-the-art technology for the benefit of researchers and users, and this time the conference made a special focus on the topic: Sustainable Mechatronics Technology.Article Citation - WoS: 7Citation - Scopus: 9Identification of Crack Noises in Household Refrigerators(Elsevier, 2015) Körük, Hasan; Arısoy, AhmetThe crack noises propagating from a refrigerator disturb residents in a household; however, the reasons behind the mechanisms of such noises have not been identified yet. In this study, the crack noises in modern household refrigerators are identified and their root causes are explored. The appropriate parameters for overall and Fourier analyses are first determined and the noise characteristics of typical household refrigerators under various conditions are presented. Then, a special test rig providing remote control of the subcomponents including the compressor, fan and heater is designed and structural acceleration and sound pressure measurements inside and outside the test rig in a quiet room are performed. The acoustic and vibration measurements are conducted under various conditions by separately controlling each subcomponent. The crack noises in typical household refrigerators are identified and their root causes are explored by using the results of the overall and Fourier analyses. Some solutions to minimize the crack noises in household refrigerators are also summarized.Conference Object Conference Object Improved Business Model Representation of Innovation Concepts(World Conference on Technology, Innovation and Entrepreneurship, 2015) Dorantes-Gonzalez, Dante Jorge; Küçükaydın, Hande; Özlem, Şirin; Bulgan, Gökçe; Aydın, Utkun; Son Turan, Semen; Karamollaoğlu, Nazlı; Teixeira, Frederico FialhoExcept for academics and consultants, the concept and purpose of innovation (not to mention related concepts such as “Open Innovation", "Free-Intellectual Property Innovation," or "Open Source Innovation") is usually unclear for most entrepreneurs and other practitioners. It often times happens that newly coined terminology becomes misleading or may even include a certain degree of sensationalism, hence turning into a matter of debate for specialists in the realm of technology management. Such has been the case for the term “Open Innovation”, since the word “open” is mainly related to crowd sourced innovation, but not for the openness on intellectual property rights. Since innovation is about the commercialization of original ideas, so we propose a simple and visual business model setting to resolve these concepts. To this regard, the “Business Model Canvas” has been used in business and entrepreneurship to sketch and frame the key points behind the development of a startup. This model was suggested by Alexander Osterwalder (2008) in his work on Business Model Ontology, as a strategic analysis template for developing startups or documenting existing businesses. It describes the firm’s value proposition, partners, resources, activities, customer relationships, distribution channels, customers, revenue streams and cost structure. However, when it comes to innovative startups, this template does not explicitly include such significant innovation components as intellectual property, its alignment to strategies, and intellectual property flow. The present paper proposes the use of an improved version of the Business Model Canvas to originally represent different models of innovation like Open Innovation, thus providing a clear, visual and quick representation of their meaning, and consequently, contribute to a better understanding of different concepts of innovation.Conference Object Citation - WoS: 3Citation - Scopus: 3First Iterative Solution of the Thermal Behaviour of Acoustic Cavitation Bubbles in the Uniform Pressure Approximation(2015) Delale, Can Fuat; Pasinlioglu, ŞenayThe thermal behaviour of a spherical gas bubble in a liquid driven by an acoustic pressure is investigated in the uniform pressure approximation by employing an iterative method to solve the energy balance equations between the gas bubble and the surrounding liquid for the temperature distribution and the gas pressure inside the bubble. It is shown that the first iterative solution leads to the first order law of the gas pressure as a polytropic power law of the bubble wall temperature and of the bubble radius, with the polytropic index given as an explicit function of the isentropic exponent of the gas. The resulting first order law of the gas pressure reduces to the classical isothermal and adiabatic laws in the appropriate limits. The first order gas pressure law is then applied to an acoustically driven cavitation bubble by solving the Rayleigh-Plesset equation. Results obtained show that the bubble wall temperature pulsations during collapse and rebound can become a few orders of magnitude higher than the bulk liquid temperature.Article Citation - WoS: 3Citation - Scopus: 3Characterization of Viscoelastic Materials Using Free-Layered and Sandwiched Samples: Assessment and Recommendations(Polish Physical Society, 2015) Özer, Mehmet Sait; Körük, Hasan; Şanlıtürk, Kenan YüceViscoelastic materials are widely used in many applications in practice. However, determination of the elastic and damping properties of these materials is quite difficult in the sense that the identified results may contain high degree of uncertainty. The characterization of viscoelastic materials using the Oberst beam method, based on non-contact excitation and response measurements, is revisited in this paper. The effects of signal processing parameters such as frequency resolution in Frequency Response Function (FRF) measurements, as well as the effects of various single-degree-of-freedom modal analysis methods, including circle-fit, half-power and line-fit are investigated first. Then, the modal loss factors, Young's modulus and shear modulus of some sample viscoelastic materials are identified using both the free-layered and sandwiched samples. The results obtained from different tests are compared, discussed and some recommendations are made so as to identify the damping and elastic properties of typical viscoelastic materials with better accuracy. Analyses of a large number of FRF measurements show that the selection of the appropriate signal processing parameters and the use of appropriate modal analysis method can be very significant during the identification of viscoelastic materials. By following the approach presented in this paper, the damping and elastic properties of viscoelastic materials can be identified with better accuracy using either free-layered or sandwiched samples. The material properties obtained by this approach can be used for developing valid structural models and/or for damping optimization purposes.Article Citation - WoS: 23Citation - Scopus: 25Acoustic Particle Palpation for Measuring Tissue Elasticity(American Institute of Physics, 2015) El Ghamrawy, Ahmed; Körük, Hasan; Choi, James J; Pouliopoulos, Antonios NWe propose acoustic particle palpation—the use of sound to press a population of acoustic particles against an interface—as a method for measuring the qualitative and quantitative mechanical properties of materials. We tested the feasibility of this method by emitting ultrasound pulses across a tunnel of an elastic material filled with microbubbles. Ultrasound stimulated the microbubble cloud to move in the direction of wave propagation, press against the distal surface, and cause deformations relevant for elasticity measurements. Shear waves propagated away from the palpation site with a velocity that was used to estimate the material’s Young’s modulus.Article Citation - WoS: 67Citation - Scopus: 90Investigation of the Acoustic Properties of Bio Luffa Fiber and Composite Materials(Elsevier, 2015) Genç, Garip; Körük, HasanConsidering the adverse effects of petroleum-based materials on nature, finding and developing new materials as alternatives to these chemical materials become a necessity in practice. On the other hand, these new materials need characterization to be considered and effectively used in practical applications. The acoustic properties of luffa bio fiber and composite materials are investigated in this study. First, the preparation of various luffa test samples and the method for acoustic characterization of the luffa samples is presented. Then, the acoustic absorption properties of both luffa fiber and composite materials are identified using the impedance tube method. After that, the transmission loss levels of the same luffa samples are determined. All the results are evaluated and the acoustic performances of luffa materials are highlighted.Article Citation - WoS: 15Citation - Scopus: 13Calibration of the Effective Spring Constant of Ultra-Short Cantilevers for a High-Speed Atomic Force Microscope(2015) Xu, Lin-Yan; Wu, Sen; Hu, Xiao-Dong; Song, Yun-Peng; Fu, Xing; Zhang, Jun-Ming; Dorantes-Gonzalez, Dante JorgeUltra-short cantilevers are a new type of cantilever designed for the next generation of high-speed atomic force microscope (HS-AFM). Ultra-short cantilevers have smaller dimensions and higher resonant frequency than conventional AFM cantilevers. Moreover, their geometry may also be different from the conventional beam-shape or V-shape. These changes increase the difficulty of determining the spring constant for ultra-short cantilevers, and hence limit the accuracy and precision of force measurement based on a HS-AFM. This paper presents an experimental method to calibrate the effective spring constant of ultra-short cantilevers. By using a home-made AFM head, the cantilever is bent against an electromagnetic compensation balance under servo control. Meanwhile the bending force and the cantilever deflection are synchronously measured by the balance and the optical lever in the AFM head, respectively. Then the effective spring constant is simply determined as the ratio of the force to the corresponding deflection. Four ultra-short trapezoid shape cantilevers were calibrated using this method. A quantitative uncertainty analysis showed that the combined relative standard uncertainty of the calibration result is less than 2%, which is better than the uncertainty of any previously reported techniques.Article Citation - Scopus: 2Strong Transient Effects of the Flow Around a Harmonically Plunging Naca0012 Airfoil at Low Reynolds Numbers(Springer, 2015) Yücel, S. Banu; Şahin, Mehmet; Ünal, M. FevziAbstract The flow pattern around a NACA0012 airfoil undergoing harmonic plunging motion corresponding to the deflected wake phenomenon reported by Jones and Platzer (Exp Fluids 46:799–810, 2009) is investigated in detail using direct numerical simulations. An arbitrary Lagrangian–Eulerian formulation based on an unstructured side-centered finite volume method is utilized in order to solve the incompressible unsteady Navier–Stokes equations. The Reynolds number is chosen to be 252, and the reduced frequency of plunging motion (k = 2?fc/U?) and the plunge amplitude non-dimensionalized with respect to chord are set to be 12.3 and 0.12, respectively, as in the experimental study of Jones and Platzer (2009). The present numerical simulations reveal a highly persistent transient effect, and it takes two orders of magnitude larger duration than the heave period to reach the time-periodic state. In addition, the three-dimensional simulation reveals that the flow field is three-dimensional for the parameters used herein. The calculation reproduces the deflected wake and shows a good agreement with the experimental wake pattern. The instantaneous vorticity contours, finite-time Lyapunov exponent fields and particle traces are presented along with the aerodynamic parameters including the lift and thrust coefficients.Article Citation - WoS: 5Citation - Scopus: 5Simulation Study and Guidelines To Generate Laser-Induced Surface Acoustic Waves for Human Skin Feature Detection(Elsevier, 2015) Chen, Kun; Wu, Sen; Li, Yanning; Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante JorgeDespite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWS) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.Conference Object Laser-Generated Surface Acoustic Wave-Based Study and Detection of Surface Cracks(Int. Sc. & Tech. Conf. Beam technologies & Laser Applications, 2015) Chen, Kun; Fu, Xing; Li, Tingting; Dorantes-Gonzalez, Dante Jorge; Li, Yanning; Wu, SenMonitoring cracks to check the integrity of engineering materials by Non- Destructive Testing (NDT) in industry is significant in industry. And within the NDT techniques, Laser-Generated Surface Acoustic Wave technique (LSAW) has shown to be a promising technique. To further develop non-contact and accurate testing strengths of this method, models for analyzing the generation, propagation and tracking of surface acoustic waves (SAW’s) changes in S45C steel samples with distributed cracks are developed by using Finite Element Method (FEM). Time and frequency domain analyses are used to process the acoustic wave signals after the interaction with cracks. The simulation results and preliminary analyses reveal the good potential LSAW’s have to monitor cracks. First results in developing an experimental setup for crack detection are also provided.Conference Object Citation - Scopus: 6On the Difficulties in Manufacturing of Luffa Fibers Reinforced Biocomposites and Variations in Their Dynamic Properties(Institute of Noise Control Engineering, 2016) Genç, Garip; Körük, HasanDefects in raw bio materials such as luffa plant effect the characteristics of the composites of these materials. These defects results in structural differences and large scattering mechanical properties such as density, damping and elasticity modulus. There are difficulties during the manufacturing of the composites from bio materials inherent to their nature. The major problems and restrictions encountered with the use of green luffa materials as reinforcement are studied in this study. First, the structural differences in the raw luffa plants are presented and the difficulties in their manufacturing are discussed. After that, the variations in measured modal parameters of luffa composites such as natural frequencies and loss factors and mechanical properties such as density and elasticity modulus are presented. Some solutions are provided to minimize the problems in manufacturing and identifying properties of luffa composites. The results show that the luffa composites can be produced with similar properties without any special selection of fibers to homogenize the batches of fibers for controlling the defects. However, a preliminary selection of fibers is required if the mechanical or dynamic properties of the luffa composites are desired to have small variations.Conference Object Advances on Laser-Generated Surface Acoustic Wave-Based Characterization of Thin Films and Skin Tissues(2016) Dorantes-Gonzalez, Dante Jorge...Conference Object Citation - WoS: 5Citation - Scopus: 12Investigation of the Vibro-Acoustic Behaviors of Luffa Bio Composites and Assessment of Their Use for Practical Applications(The International Institute of Acoustics and Vibration, 2016) Genç, Garip; Körük, HasanNew materials as alternatives to petroleum-based composite materials are needed due to adverse effects of chemical materials on nature. On the other hand, there is a need to characterize and evaluate new alternative materials to be effectively used in practical applications. The vibro-acoustic behaviors including damping and elastic properties, sound absorption and transmission loss levels of luffa bio-composites are investigated and their use for practical applications is evaluated in this study. First, the procedure for manufacturing luffa composites is summarized and materials and methods are presented. After that, the acoustic absorption and transmission loss levels of sample luffa composites are explored by using the impedance tube method. The damping and elastic properties of sample luffa composites are determined by using experimental and theoretical modal data. Furthermore, the interface properties of the luffa fibers and matrix are examined by using Scanning Electron Microscope. All the results are evaluated and the potential of the use of luffa composites in practical applications is assessed.
