Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Department "Mühendislik Fakültesi, Makine Mühendisliği Bölümü"
Now showing 1 - 20 of 74
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 11441. Quantification of the Flow Noise in Household Refrigerators(JVE INTERNATIONAL LTD., 2014) Körük, Hasan; Arısoy, Ahmet; Bilgin, NecatiThe flow noise in household refrigerators is quantified in this study. First, the sound pressure measurements in a quiet room using typical household refrigerators are conducted and the noise characteristics of the refrigerators are presented. Then, the flow noise in household refrigerators is quantified using the results of the overall analysis and Fourier transform of the measured sound pressure data. After that, the flow noise in household refrigerators is quantified using the sound pressure measurements conducted using a specially designed test rig. The frequency characteristics of the flow noise in household refrigerators are also explored and the contribution of the flow noise is identified.Editorial 17th International Conference on Mechatronics Technology, October 15-18, 2013, Jeju Island, Korea(Elsevier, 2015) Hwang, Sung Ho; Kim, Joon-wan; Dorantes-Gonzalez, Dante JorgeIn recent years, Mechatronics has gained a lot of interest as more applications have been introduced to industry and society. The need for new mechatronic technologies in the form of advanced production systems, mechatronic devices, control systems, robotics, biomedical applications, MEMS, and measurement systems, among others, is very much required in improving productivity and competitiveness in many industries. Thus, this conference was organized to address the state-of-the-art technology for the benefit of researchers and users, and this time the conference made a special focus on the topic: Sustainable Mechatronics Technology.Book Part Citation - Scopus: 518 - Acoustic and Mechanical Properties of Biofibers and Their Composites(Elsevier, 2022) Koç, Büşra; Genç, Garip; Körük, HasanIn this study, the acoustic and mechanical properties of many biofibers and their composites are presented. First, the sound absorption coefficients and transmission losses of commonly used natural fibers and their composites are presented, by clearly reporting the thickness of the samples, for three different frequency ranges (<500 Hz: low, 500–2000 Hz: medium, and >2000 Hz: high). In addition, the sound absorption coefficients (for low- and medium-frequency ranges) and noise reduction coefficients of some 40-cm-thick samples are overlaid in order to directly compare their performances. Second, the physical properties, such as the density, diameter, and length of biofibers, and mechanical properties, such as the damping (or loss factor) and Young’s modulus of biofibers and their composites, are presented in detail. For comparison purposes, the acoustic and mechanical properties of some conventional materials, such as carbon and glass fibers, are included in the tables and figures. Finally, the effects of some parameters, such as pretreatment, fiber diameter, fiber/matrix ratio, moisture content, manufacturing and machining parameters/techniques, and measurement conditions/methods, on the acoustic and mechanical properties of natural materials are presented. Furthermore, current applications and potential usage areas of natural fibers are briefly discussed.Book Part Citation - Scopus: 319 - Identification of the Elastic and Damping Properties of Jute and Luffa Fiber-Reinforced Biocomposites(Elsevier, 2022) Genç, Garip; Saygılı, Yusuf; Körük, Hasan; Şanlıtürk, Yusuf KenanAlthough there are many studies in the literature on the static mechanical properties of biomaterials such as tensile strength, the dynamic mechanical properties of biomaterials such as modal loss factors have not been investigated in detail. In this study, the Young’s moduli and damping (or loss factors) of some jute and luffa fiber-reinforced biocomposites are investigated. The effects of fiber/resin ratio and thickness on the mechanical properties of the jute and luffa composites are identified via an experimental approach. For this purpose, acoustic and structural frequency response functions of some homogeneous and hybrid jute and luffa composite plates with different fiber/resin ratios and thicknesses are measured. By analyzing the measured frequency response functions using the circle-fit method, the modal frequencies and loss factors of the homogeneous and hybrid composite plates are determined. By assuming that the homogeneous plates are isotropic, the same plates are modeled using the finite element method, and by comparing the experimental and theoretical natural frequencies, the elastic properties of the homogeneous plates are determined. In addition, the same homogeneous plates are modeled by considering an anisotropic material model, and the associated material properties are determined. By using the identified material properties, the finite element models of the hybrid composite plates are developed, and by comparing their experimental and theoretical natural frequencies, the identified elastic material properties are evaluated and validated.Conference Object A Business Model Frame for Innovative Startups - (july 11-15, 2017)(Global Business & Technology Association, 2017) Dorantes-Gonzalez, Dante JorgeCurrent business model frames such as the Business Model Canvas and the Lean Canvas do not address aspects of open innovation, problem statement, innovative problem solving, business metrics and disruptive strategies; therefore, a novel business model frame is introduced to cover these aspects. This new model is based on a combination of key principles of the theory of inventive problem solving applied to business and management, such as multi-screen analysis of value-conflict mapping, trends of ideality of business system evolution positioning, among others; but also, intellectual property, disruptive strategies, and open innovation, as well as startup metrics to describe the business differentiation and attractiveness to potential investors, incubators and accelerators. The entrepreneur designing his/her own startup should be able to justify if not all, most of the items to be able to demonstrate the idea strengths. And regarding both building blocks “Product Formulation and Inventive Problem Solving” and “Disruption Strategy”, certain training should be necessary.Article Citation - WoS: 5Citation - Scopus: 6A New Approach for Measuring Viscoelastic Properties of Soft Materials Using the Dynamic Response of a Spherical Object Placed at the Sample Interface(Springer, 2023) Besli, Ayça; Koç,Ömer Hayati; Körük,Hasan; Yurdaer, Berk SalihBackground: There are several techniques to characterize the mechanical properties of soft materials, such as the indentation method and the method based on the application of a spherical object placed inside the sample. The indentation systems usually yield the elastic properties of materials and their mathematical models do not consider the inertia of the sample involved in motion and radiation damping, while placing an object inside the sample is not practical and this procedure can alter the mechanical properties of the sample for the method based on the application of a bubble/sphere placed inside the sample. Objective: A new approach for the identification of the viscoelastic properties of soft materials using the dynamic response of a spherical object placed at the sample interface was proposed. Methods: The spherical object placed at the sample interface was pressed using an electromagnet and the dynamic response of the spherical object was tracked using a high-speed camera, while the dynamic response of the spherical object placed at the sample interface was estimated using a comprehensive analytical model. The effects of the shear modulus, viscosity, Poisson’s ratio and density of the soft sample, the radius and density of the spherical object and the damping due to radiation were considered in this mathematical model. The shear modulus and viscosity of the soft sample were determined by matching the experimentally identified and theoretically estimated responses of the spherical object. Results: The shear moduli and viscosities of the three phantoms with the gelatin mass ratios of 0.20, 0.25 and 0.29 were measured to be 3450, 4300 and 4950 Pa and 12.5, 14.0 and 15.0 Pa⋅s, respectively. The shear modulus and viscosity of the phantom increases as the gelatin mass ratio increases. The frequency of oscillations of the hemisphere placed at the phantom interface increases as the gelatin mass ratio increases due to stiffness increase. Conclusions: After matching the experimental and theoretical steady-state displacements and amplitudes of oscillations of the hemisphere at the sample interface, the comparison of the experimentally identified and theoretically predicted frequency of oscillations further confirmed the identified material properties of the samples. The approach presented here is expected to provide valuable information on material properties in biomedical and industrial applications.Article Citation - WoS: 9Citation - Scopus: 12A New Triangular Composite Shell Element With Damping Capability(Elsevier, 2014) Körük, Hasan; Şanlıtürk, Kenan YüceThis paper presents a new triangular composite shell element with damping capability. Formulation of the composite triangular shell element is based on stacking individual homogeneous triangular shell ele- ments on top of each other. The homogeneous shell element is an assembly of a triangular membrane element with drilling degrees of freedoms and a plate element. Damping capability is provided by means of complex element stiffness matrix of individual flat layers of the composite element. These elements with damping capability allow modelling general structures with damping treatments. A few test cases are modelled using triangular finite element developed here and the results of the complex eigenvalue analyses are compared with those of the quadrilateral shell elements proposed recently. The results obtained using the presented triangular and previous quadrilateral composite elements are also com- pared with those based on modal strain energy method and experimental results. Comparisons of the experimental and the theoretical results confirm that the modal properties including modal damping lev- els of structures with damping treatments can be predicted with high accuracy using the proposed finite element.Article A Novel Business Model Frame for Innovative Startups – (Article)(2017) Dorantes-Gonzalez, Dante JorgePurpose- This paper presents a novel business model frame that is meant to explicitly include several approaches of the Theory of Inventive Problem Solving, disruptive strategies, business metrics, problem statement and opportunity formulation, as well as improvements on the profit formula. Methodology- The analysis first addresses the business model canvas, sketching and framing key points behind the development of startups. The analysis on existing business models covers the firm’s value proposition, partners, resources, activities, customer relationships, distribution channels, customers, revenue streams and cost structure. When it comes to innovative startups, the author emphasizes that existing template do not explicitly include innovation measures, no problem/opportunity formulation, intellectual property, or even basic business model concepts as the profit formula. Hence, an innovative frame is developed primarily using the Theory of Inventive Problem Solving technique applied to business and management such as multi-screen analysis of value-conflict mapping, trends of ideality of business system evolution positioning, among others; but also, intellectual property, disruptive strategies, and open innovation, as well as startup metrics. Findings- A novel frame is proposed, providing general guidelines for each of the sections. Any entrepreneur designing his/her own startup should be able to justify, if not all, most of the items to be able to demonstrate the idea strengths. Regarding the specific building blocks: “Product Formulation and Inventive Problem Solving” and “Disruption Strategy”, certain short training should be necessary. Conclusion- The proposed business model frame visually and concisely sketches, besides accurately stating traditional business concepts, the key innovation concepts that any startup should integrate to be a game-changer in a competitive market. The developed frame is a helpful mapping and evaluation tool to accurately describe the business differentiation and innovation attractiveness to potential investors, incubators and accelerators.Conference Object A Novel Business Model Frame for Innovative Startups - (may 12-14, 2017)(World Conference on Technology, Innovation and Entrepreneurship, 2017) Dorantes-Gonzalez, Dante JorgeThe business model canvas has been used in business and entrepreneurship to sketch and frame the key points behind the development of a startup, and it was meant to strategically analyze and develop startups or documenting existing businesses. The business model canvas describes the firm’s value proposition, partners, resources, activities, customer relationships, distribution channels, customers, revenue streams and cost structure. However, when it comes to innovative startups, this template does not explicitly include innovation measures, no problem/opportunity formulation, or even such a basic component of a business model, as the profit formula. The present paper proposes a novel business model frame to visually and concisely sketch, besides accurately state traditional business concepts, key innovation concepts that any startup should integrate to be a game-changer in a competitive market. This new model is based on a combination of key principles of the theory of inventive problem solving (TRIZ) applied to business and management, such as multi-screen analysis of value-conflict mapping, trends of ideality of business system evolution positioning, among others; but also intellectual property, disruptive strategies, and open innovation, as well as startup metrics to describe the business differentiation and attractiveness to potential investors, incubators and accelerators.Conference Object A Novel Standard for Graphical Representation of Mental Models and Processes in Cognitive Sciences(World Congress of Education, 2018) Dorantes-Gonzalez, Dante Jorge; McKeown, John A.G.Cognitive Science has positioned itself to be a common ground in which models of mental processes from multiple disciplines merge, situating itself as a common field for new learning theories, or for formalizing existing ones. However, the authors have identified a need for updating the existing graphical representations by incorporating more accessible understanding for teachers and researchers in cross- multidisciplinary fields. In this regard, the present investigation attempts to generate a standard graphical language to represent complex mental processes by the introduction of functional principles, schemes and models that have been successfully used in technical areas such as adaptive control systems, algorithm flow charts, and artificial intelligence. This graphical representation, entitled “Cognitive Functional Representation” (CFR), is further shown to be efficacious in incorporating the essence of complex cognitive theories.Book Part Citation - WoS: 27Citation - Scopus: 33Acoustic and Mechanical Properties of Luffa Fiber-Reinforced Biocomposites(Elsevier, 2019) Genç, Garip; Körük, HasanThis chapter presents an overview of acoustic and mechanical behaviors of luffa fiber reinforced biocomposites. A growing number of studies are examining the composites of biodegradable fibers such as flax, hemp, kenaf and luffa due to the adverse effects of chemical materials on nature. The low cost and superior acoustic and acceptable mechanical properties of biocomposites make them very attractive for practical applications such as sound and vibration isolation. However, the acoustic and mechanical characteristics of biocomposites and their dynamic behaviors should be fully determined before considering them for practical applications. In this chapter, acoustic properties, such as sound absorption and transmission loss, and mechanical properties, such as damping and elasticity of luffa fiber reinforced composites, are presented. The variations in acoustic and mechanical properties due to different samples and manufacturing process are explored.Article Citation - WoS: 1Citation - Scopus: 1Acoustic Cavitation Model Based on a Novel Reduced Order Gas Pressure Law(2021) Pasinlioğlu, Şenay; Delale, Can FuadThe thermal behavior of a spherical gas bubble in a liquid excited by an acoustic pressure signal is investigated by constructing an iterative solution of the energy balance equations between the gas bubble and the surrounding liquid in the uniform pressure approximation. This iterative solution leads to hierarchy equations for the radial partial derivatives of the temperature at the bubble wall, which control the temporal rate of change of the gas pressure and gas temperature within the bubble. In particular, a closure relation for the hierarchy equations is introduced based on the ansatz that approximates the rapid change of state during the collapse of the bubble from almost isothermal to almost adiabatic behavior by time averaging the complex dynamics of change of state over a relatively short characteristic time. This, in turn, leads to the desired reduced order gas pressure law exhibiting power law dependence on the bubble wall temperature and on the bubble radius, with the polytropic index depending on the isentropic exponent of the gas and on a parameter that is a function of the Péclet number and a characteristic time scale. Results of the linear theory for gas bubbles are recovered by identifying this parameter as a function of the Péclet number based on the Minnaert frequency. The novel gas pressure law is then validated against the near-isothermal solution and against the results of the numerical simulations of the original energy balance equations for large amplitude oscillations using spectral methods. Consequently, an acoustic cavitation model that accounts for phase change but that neglects mass diffusion is constructed by employing the reduced order gas pressure law together with the Plesset–Zwick solution for the bubble wall temperature and the Keller–Miksis equation for spherical bubble dynamics. Results obtained using variable interface properties for acoustically driven cavitation bubbles in water show that the time variations of the bubble radius and the bubble wall temperature lie between those obtained by the isothermal and adiabatic laws depending on the value of the Péclet number and the characteristic time scale.Article Citation - WoS: 23Citation - Scopus: 25Acoustic Particle Palpation for Measuring Tissue Elasticity(American Institute of Physics, 2015) El Ghamrawy, Ahmed; Körük, Hasan; Choi, James J; Pouliopoulos, Antonios NWe propose acoustic particle palpation—the use of sound to press a population of acoustic particles against an interface—as a method for measuring the qualitative and quantitative mechanical properties of materials. We tested the feasibility of this method by emitting ultrasound pulses across a tunnel of an elastic material filled with microbubbles. Ultrasound stimulated the microbubble cloud to move in the direction of wave propagation, press against the distal surface, and cause deformations relevant for elasticity measurements. Shear waves propagated away from the palpation site with a velocity that was used to estimate the material’s Young’s modulus.Article Citation - WoS: 12Citation - Scopus: 15Acoustic Streaming in a Soft Tissue Microenvironment(Elsevier, 2019) El Ghamrawy, Ahmed; Mohammed, Ali; Jones, Julian R; Körük, Hasan; Choi, James J; de Comtes, FlorentinaWe demonstrated that sound can push fluid through a tissue-mimicking material. Although acousticstreaming in tissue has been proposed as a mechanism for biomedical ultrasound applications, such as neuromodu-lation and enhanced drug penetration, streaming in tissue or acoustic phantoms has not been directly observed. Wedeveloped a material that mimics the porous structure of tissue and used a dye and a video camera to track fluidmovement. When applied above an acoustic intensity threshold, a continuous focused ultrasound beam (spatialpeak time average intensity: 238 W/cm2, centre frequency: 5 MHz) was found to push the dye axially, that is, in thedirection of wave propagation and in the radial direction. Dye clearance increased with ultrasound intensity andwas modelled using an adapted version of Eckart’s acoustic streaming velocity equation. No microstructuralchanges were observed in the sonicated region when assessed using scanning electron microscopy. Our study indi-cates that acoustic streaming can occur in soft porous materials and provides a mechanistic basis for future use ofstreaming for therapeutic or diagnostic purposes.Conference Object Advances on Laser-Generated Surface Acoustic Wave-Based Characterization of Thin Films and Skin Tissues(2016) Dorantes-Gonzalez, Dante Jorge...Article Citation - WoS: 54Citation - Scopus: 63An Assessment of the Performance of Impedance Tube Method(Institute of Noise Control Engineering, 2014) Hasan KörükThe impedance tube method is widely used for measuring sound absorption (or reflection) coefficients of acoustic materials as a function of frequency. However, the sound absorption coefficients obtained using the impedance tube method may have some variations due to the dimensions (limits) of an impedance tube, sample preparation and sample mounting. This paper assesses the performance of the two-microphone impedance tube method as a function of frequency for different tube dimensions and materials and presents suggestions for increasing the reliability and repeatability of impedance tube measurements. First, after summarizing a systematic way for measuring acoustic transfer functions, sound absorption coefficients of a variety of materials ranging from conventional absorbing acoustic materials to samples with thin films are measured using two tubes with different tube diameter and microphone spacing. Uncertainty of sound absorption coefficients for various materials is discussed, and the frequency limits of impedance tubes are assessed. Then, a method for minimizing uncertainty due to sample mounting is proposed and the main findings are discussed.Article Citation - WoS: 4Citation - Scopus: 4Application of Ultrasonic Vibrations for Minimization of the Accumulation of Limescale in Steam Irons(Elsevier, 2018) Körük, Hasan; Şanlıtürk, Kenan Yüce; Serenli, MuzafferThe accumulation of limescale in steam irons can significantly reduce the ironing efficiency. It is this problem that inspired us to introduce ultrasonic vibrations to irons in order to minimize limescale accumulation. This study describes a methodology for designing, modelling and optimizing an iron fitted with an ultrasonic exciter in an attempt to minimize limescale accumulation. In our methodology, first, an experimental demonstration of the potential benefits of ultrasonic vibrations in steam irons was conducted, using two existing irons, one of which was equipped with an ultrasonic exciter. Having confirmed the benefits, an experimental iron was designed and then optimized to maximise ultrasonic vibrations using finite element analyses within a predefined frequency range. To validate the results of the finite element analyses, a prototype iron base was built, and forced vibrations of this prototype, at ultrasonic frequencies ranging from 35 to 40 kHz, were measured using a laser vibrometer. The results of the theoretical and experimental vibration analyses as well as the physical experiments on the steam irons indicate that it is possible for ultrasonic vibrations to be utilized in irons to minimize the accumulation of limescale.Article Citation - WoS: 2Citation - Scopus: 2Approximate Closed-Form Solutions for Vibration of Nano-Beams of Local/Non-local Mixture(Springer, 2022) Ruta, Giuseppe; Eroğlu, UğurcanThis paper presents an approach to natural vibration of nano-beams by a linear elastic constitutive law based on a mixture of local and non-local contributions, the latter based on Eringen's model. A perturbation in terms of an evolution parameter lets incremental field equations be derived; another perturbation in terms of the non-local volume fraction yields the variation of the natural angular frequencies and modes with the 'small' amount of non-locality. The latter perturbation does not need to comply with the so-called constitutive boundary conditions, the physical interpretation of which is still debated. The possibility to find closed-form solutions is highlighted following a thorough discussion on the compatibility conditions needed to solve the steps of the perturbation hierarchy; some paradigmatic examples are presented and duly commented.Article Citation - WoS: 10Citation - Scopus: 20Assessment of the Measurement and Prediction Methods for the Acoustic Properties of Natural Fiber Samples and Evaluation of Their Properties(Taylor & Francis, 2021) Körük, HasanAlthough some studies have been conducted to show how natural fibers canreplace synthetic materials, the use of many natural fibers is still limited. Onthe other hand, the use of natural fibers can become very common in manyapplications once their performance is fully understood. This paper aims topresent a critical assessment of the acoustic properties of natural fibersamples. First, the methods commonly used for the measurement and prediction of the acoustic properties of natural fiber samples are determined.Second, the common techniques for measuring sound absorption coefficients (SACs) and sound transmission losses (STLs) are presented, and theiradvantages and limitations are evaluated. After that, the models commonlyused for the prediction of acoustic properties are presented. Then, the SACsof many natural fiber samples are presented along with the thickness, bulkdensity and flow resistivity of the samples. Furthermore, the SACs of thesamples are normalized using sample thickness and bulk density, and thesound absorption performance of the fiber samples is evaluated. Based onthe results of many natural fiber samples, an empirical model for estimatingthe SACs of natural fiber samples is presented. Finally, the STLs of someporous natural fiber samples are presented.Conference Object Assessment of the Models for Predicting the Responses of Spherical Objects in Viscoelastic Mediums and at Viscoelastic Interfaces(IOP Publishing Ltd, 2021) Körük, HasanSpherical objects, such as bubbles and spheres, embedded in mediums and atviscoelastic interfaces are encountered in many applications, including the determination ofmaterial properties. This paper assesses the models for predicting the responses of sphericalobjects in viscoelastic mediums and at viscoelastic interfaces used in various applications. Themodels are presented very compactly, and evaluations are performed based on the analyses ofthe models for the spherical objects in viscoelastic mediums and at viscoelastic interfaces. First,the models for predicting the static displacements of spherical objects are presented andassessed. After that, the models for predicting the dynamic responses of spherical objects arepresented and their dynamic behaviours are compared. Then, the models for the deformation ofthe medium around spherical objects and stress distribution are presented and evaluated. Themodels and evaluations presented in this study can be exploited in various applications,including biomedical applications.
