Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Journal "Applied Acoustics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 4Citation - Scopus: 4Application of Ultrasonic Vibrations for Minimization of the Accumulation of Limescale in Steam Irons(Elsevier, 2018) Körük, Hasan; Şanlıtürk, Kenan Yüce; Serenli, MuzafferThe accumulation of limescale in steam irons can significantly reduce the ironing efficiency. It is this problem that inspired us to introduce ultrasonic vibrations to irons in order to minimize limescale accumulation. This study describes a methodology for designing, modelling and optimizing an iron fitted with an ultrasonic exciter in an attempt to minimize limescale accumulation. In our methodology, first, an experimental demonstration of the potential benefits of ultrasonic vibrations in steam irons was conducted, using two existing irons, one of which was equipped with an ultrasonic exciter. Having confirmed the benefits, an experimental iron was designed and then optimized to maximise ultrasonic vibrations using finite element analyses within a predefined frequency range. To validate the results of the finite element analyses, a prototype iron base was built, and forced vibrations of this prototype, at ultrasonic frequencies ranging from 35 to 40 kHz, were measured using a laser vibrometer. The results of the theoretical and experimental vibration analyses as well as the physical experiments on the steam irons indicate that it is possible for ultrasonic vibrations to be utilized in irons to minimize the accumulation of limescale.Article Citation - WoS: 7Citation - Scopus: 9Identification of Crack Noises in Household Refrigerators(Elsevier, 2015) Körük, Hasan; Arısoy, AhmetThe crack noises propagating from a refrigerator disturb residents in a household; however, the reasons behind the mechanisms of such noises have not been identified yet. In this study, the crack noises in modern household refrigerators are identified and their root causes are explored. The appropriate parameters for overall and Fourier analyses are first determined and the noise characteristics of typical household refrigerators under various conditions are presented. Then, a special test rig providing remote control of the subcomponents including the compressor, fan and heater is designed and structural acceleration and sound pressure measurements inside and outside the test rig in a quiet room are performed. The acoustic and vibration measurements are conducted under various conditions by separately controlling each subcomponent. The crack noises in typical household refrigerators are identified and their root causes are explored by using the results of the overall and Fourier analyses. Some solutions to minimize the crack noises in household refrigerators are also summarized.