Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Journal "Applied Science and Engineering Progress"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - Scopus: 4Investigation of the Motion of a Spherical Object Located at Soft Elastic and Viscoelastic Material Interface for Identification of Material Properties(Academic Enhancement Department, King Mongkut's University of Technology North Bangkok, 2024) Körük, Hasan; Pouliopoulos, A.N.Measuring the properties of soft viscoelastic materials is challenging. Here, the motion of a spherical object located at the soft elastic and viscoelastic material interface for the identification of material properties is thoroughly investigated. Formulations for different loading cases were derived. First, the theoretical models for a spherical object located at an elastic medium interface were derived, ignoring the medium viscosity. After summarizing the model for the force reducing to zero following the initial loading, we developed mathematical models for the force reducing to a lower non-zero value or increasing to a higher non-zero value, following the initial loading. Second, a similar derivation process was followed to evaluate the response of a spherical object located at a viscoelastic medium interface. Third, by performing systematic analyses, the theoretical models obtained via different approaches were compared and evaluated. Fourth, the measured and predicted responses of a spherical object located at a gelatin phantom interface were compared and the viscoelastic material properties were identified. It was seen that the frequency of oscillations of a spherical object located at the sample interface during loading was 10–15% different from that during unloading in the experimental studies here. The results showed that different loading cases have immense practical value and the formulations for different loading cases can provide an accurate determination of material properties in a multitude of biomedical and industrial applications. © 2023 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.Article Citation - Scopus: 9Investigation of the Sound Absorption and Transmission Loss Performances of Green Homogenous and Hybrid Luffa and Jute Fiber Samples(King Mongkut’s University of Technology North Bangkok, 2021) Genç, Garip; Şanlıtürk, Kenan Y.; Körük, Hasan; Özcan, Ahmet CihanIn order to promote the use of natural fibers in noise and vibration applications, the properties of these structures should be fully identified. The sound absorption coefficients (SACs) and transmission losses (TLs) of green luffa fiber samples are thoroughly investigated and their acoustic performances are compared with the acoustic performances of green homogenous jute and hybrid jute/luffa fiber samples in this study. For this purpose, green homogenous luffa and jute fiber samples and their green hybrid fiber samples with different thicknesses (10, 20, 30, and 40 mm) are produced and their SACs and TLs are determined using the impedance tube method. First, the methods for the experimental identification of acoustic properties are presented and the variations in the measured acoustic properties are identified. After that, the effects of sample thickness on the acoustic performances of homogenous luffa as well as jute samples and their hybrid fiber samples as a function of frequency are explored. The thickness-dependent tendencies of the SACs and TLs of homogenous and hybrid luffa and jute fiber samples for low, medium and high frequency ranges are determined. Then, the acoustic performances of the homogenous and hybrid luffa and jute samples are compared and evaluated. The results and analyses for the acoustic properties of homogeneous luffa and jute fiber samples and their hybrid fiber samples for a variety of thicknesses and different frequencies presented here can be used to design homogenous as well as hybrid luffa and jute fiber structures in practical applications.