Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1940
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Language "tr"
Now showing 1 - 20 of 32
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 2A Visualization Platfom for Disk Failure Analysis(IEEE, 2018) Arslan, Şuayb Şefik; Yiğit, İbrahim Onuralp; Zeydan, EnginIt has become a norm rather than an exception to observe multiple disks malfunctioning or whole disk failures in places like big data centers where thousands of drives operate simultaneously. Data that resides on these devices is typically protected by replication or erasure coding for long-term durable storage. However, to be able to optimize data protection methods, real life disk failure trends need to be modeled. Modelling helps us build insights while in the design phase and properly optimize protection methods for a given application. In this study, we developed a visualization platform in light of disk failure data provided by BackBlaze, and extracted useful statistical information such as failure rate and model-based time to failure distributions. Finally, simple modeling is performed for disk failure predictions to alarm and take necessary system-wide precautions.Conference Object Citation - Scopus: 2Alternative Data Sources and Psychometric Scales Supported Credit Scoring Models(IEEE, 2023) Şahin, Türkay; Filiz, Gözde; Çakar, Tuna; Özvural, Özden Gebizlioğlu; Nicat, ŞahinThis study aims to evaluate individuals with limited access to banking services and enhance credit scoring models with alternative data sources. A psychometric-based credit scoring model was developed and tested. Despite limited data, significant potential findings were obtained. However, clarification of the distinction between credit payment intention and ability and validation of the results with more data are necessary.Conference Object Citation - WoS: 14Citation - Scopus: 40An Overview of Blockchain Technologies: Principles, Opportunities and Challenges(IEEE, 2018) Arslan, Şuayb Şefik; Mermer, Gültekin Berahan; Zeydan, EnginBlokzincir, toplumumuzun birbiriyle iletişim kurma ve ticaret yapma biçiminde devrim yapma potansiyeline sahip, yakın zamanda ortaya çıkmış olan bir teknolojidir. Bu teknolojinin sağladığı en önemli avantaj aracı gerektiren bir oluşumda güvenilir bir merkezi kuruma ihtiyaç duymadan değer taşıyan işlemleri değiş tokuş edebilmesidir. Ayrıca, veri bütünlüğü, dahili orijinallik ve kullanıcı şeffaflığı sağlayabilir. Blokzincir, birçok yenilikçi uygulamanın temel alınacağı yeni internet olarak görülebilir. Bu çalışmada, genel çalışma prensibi, oluşan fırsatlar ve ileride karşılaşılabilecek zorlukları içerecek şekilde güncel blokzincir teknolojilerinin genel bir görünümünü sunmaktayız.Conference Object Citation - WoS: 2Citation - Scopus: 2Classification of Altruistic Punishment Decisions by Optical Neuroimaging and Machine Learning Methods(IEEE, 2023) Erözden, Ozan; Şahin, Türkay; Akyürek, Güçlü; Filiz, Gözde; Çakar, TunaAltruistic punishment (third-party punishment) is important in terms of maintaining social norms and promoting prosocial behavior. This study examined data obtained using the near infrared spectroscopy (fNIRS) method to predict altruistic punishment decisions. It was found that specific neural activity patterns were significantly related to decisions regarding the punishment of the perpetrator. This research contributes to the development of social decision-making models and helps advance our understanding of the cognitive and neural processes involved in third-party punishments.Conference Object Customer Segmentation and Churn Prediction via Customer Metrics(IEEE, 2022) Bozkan, Tunahan; Cakar, Tuna; Sayar, Alperen; Ertugrul, SeyitIn this study, it is aimed to predict whether customers operating in the factoring sector will continue to trade in the next three months after the last transaction date, using data-driven machine learning models, based on their past transaction movements and their risk, limit and company data. As a result of the models established, Loss Analysis (Churn) of two different customer groups (Real and Legal factory) was carried out. It was estimated by the XGBoost model with an F1 Score of 74% and 77%. Thanks to this modeling, it was aimed to increase the retention rate of customers through special promotions and campaigns to be made to these customer groups, together with the prediction of the customers who will leave. Thanks to the increase in retention rates, a direct contribution to the transaction volume on a company basis was ensured.Conference Object Citation - WoS: 2Citation - Scopus: 2Data Repair in Bs-Assisted Distributed Data Caching(IEEE, 2020) Kaya, Erdi; Haytaoğlu, Elif; Arslan, Şuayb ŞefikIn this paper, centralized and independent repair approaches based on device-to-device communication for the repair of the lost nodes have been investigated in a cellular network where distributed caching is applied whose fault tolerance is provided by erasure codes. The caching mechanisms based on Reed-Solomon codes and minimum bandwidth regenerating codes are adopted. The proposed approaches are analyzed in a simulation environment in terms of base station utilization load during the repair process. Based on the intuitive assumption that the base station is usually more costly than device-to-device communication, the centralized repair approach demonstrates a better performance than the independent repair approaches on the number of symbols retrieved from the base station. On the other hand, the centralized approach has not achieved a dramatic reduction in the number of symbols downloaded from the other devices.Conference Object Determination of Alzheimer's Disease Levels by Ordinal Logistic Regression and Artificial Learning Algorithms(Ieee, 2024) Bulut, Nurgül; Çakar, Tuna; Arslan, Ilker; Akinci, Zeynep Karaoglu; Oner, Kevser SetenayThis study compares artificial learning algorithms and logistic regression models in determining different levels of Alzheimer's disease (AD). The research uses demographic, genetic, and neurocognitive inventory results obtained from the National Alzheimer's Coordination Center (NACC) database, along with brain volume/thickness measurements derived from MRI scanners. Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM models were employed to determine the 4 different ordinal levels of AD. Although there were similarities between the accuracy rate, F1 score, AUC value, and sensitivity, specificity, and precision performance measures of each class, the highest classification rate was achieved by the Random Forest model where the oversampling was not applied. (F1 score: 0.86; accuracy: 0.86 and AUC: 0.95). The outputs of the model with the best performance were explained with the SHAP (SHapley Additive exPlanations) method. These findings indicate that non-invasive markers and artificial learning models can be used effectively in early diagnosis and decision support systems to predict different levels of Alzheimer's disease.Conference Object Citation - Scopus: 1Distinguishing Cognitive Processes: a Machine Learning Approach To Decode Fnirs Data for Third-Party Punishment and Credit Decision-Making(Ieee, 2024) Filiz, Gozde; Son, Semen; Sayar, Alperen; Ertugrul, Seyit; Sahin, Turkay; Akyurek, Guclu; Çakar, TunaFunctional near-infrared spectroscopy (fNIRS) has seen increasingly widespread use in examining brain activity and cognitive processes. However, the existing literature provides insufficient information on distinguishing between different decision-making mechanisms. This study explores the application of fNIRS in differentiating between two distinct decision-making processes: third-party punishment decisions and credit decisions. The research includes analyzing fNIRS data collected during these processes and classifying the associated neural patterns using machine learning. The findings reveal that fNIRS, in conjunction with ML, holds substantial potential to enhance the depth of understanding of decision-making processes in neuroscience research.Conference Object Dog Walker Segmentation(IEEE, 2022) Ercan, Alperen; Karan, Baris; Çakar, TunaIn this study dog walkers were separated into clusters according to walkers' walk habits. Due to the fact that the distributions were non-normal, normalization algorithms were applied before the onset of clustering. After normalizing, K Means algorithm and Gaussian Mixture Models used for finding optimum cluster count. According to these clusters, walkers' consecutive months separated to follow-up their behavioral traits. This part of the study adds value to the project to examine walkers' behaviors closer.Conference Object Eaft: Evolutionary Algorithms for Gcc Flag Tuning(IEEE, 2022) Tagtekin, Burak; Çakar, TunaDue to limited resources, some methods come to the fore in finding and applying the factors that affect the working time of the code. The most common one is choosing the correct GCC flags using heuristic algorithms. For the codes compiled with GCC, the selection of optimization flags directly affects the speed of the processing, however, choosing the right one among hundreds of markers during this process is a resource consuming problem. This article explains how to solve the GCC flag optimization problem with EAFT. Rather than other autotuner tools such as Opentuner, EAFT is an optimized tool for GCC marker selection. Search infrastructure has been developed with particle swarm optimization and genetic algorithm with diffent submodels rather than using only Genetic Algorithm like FOGA. © 2022 IEEE.Conference Object Evaluating Electrophysiological Responses Due To Identity Judgments(Ieee, 2024) Çakar, Tuna; Hohenberger, AnnetteThis study was conducted to explore how the brain processes decisions about identity, employing event-related potentials (ERPs) as a measure. The aim was to ascertain if the EEG/ERP technique could be used to monitor the cognitive processing of identity judgments as they happen. The investigation focused on comparing two groups of statements: those that used the concept of 'same' and those that used 'different'. The researchers hypothesized that there would be notable differences in the ERPs, particularly around the 400-millisecond mark, correlating with the reaction time disparities observed behaviorally. The ERP data revealed that the 'different' statements generated a unique N400 response when contrasted with the 'same' statements, implying that the participants' cognitive responses to these two types of judgments were not the same.Conference Object Citation - WoS: 1Citation - Scopus: 1Face Recognition With Local Zernike Moments Features Around Landmarks(IEEE, 2016) Gökmen, MuhittinIn this paper, a new method that extracts the features from the complex Local Zernike Moments (LZM) images around facial landmarks is proposed. In this method, multiple grids which are in different sizes are located on landmarks and Phase-Magnitude (PM) histograms are calculated in each cells of these grids. The PM histograms are calculated for every component of LZM and the feature vectors are created by concatenating these histograms. By reducing the dimensionality of these vectors using Whitened Principle Component Analysis, more robust descriptors are constructed. It is shown that the state-of-the-art results are obtained in the experiments performed on FERET database using the proposed method. © 2016 IEEE.Conference Object Feature Enrichment Via Similar Trajectories for Xgboost Based Time Series Forecasting(Ieee, 2024) Yilmaz, Elif; Islak, Umit; Çakar, Tuna; Arslan, IlkerIn this study, new time series forecasting models are developed based on XGBoost, and the similar trajectories method (ST), which can be interpreted as a regression based on nearest neighbors. Both the similar trajectories method and XGBoost model are known to have successful applications in traffic flow prediction. In our case, the focus is on similar trajectories used in the former method, and features based on these trajectories are used in the training of XGBoost. The success of the proposed models is confirmed through metrics such as the mean absolute error. Also, statistical tests are performed among the compared benchmark models. The study is concluded with discussions and questions about how these models can be further developed.Conference Object Citation - WoS: 1Citation - Scopus: 1Hata Düzeltme Çıktı Kodları: Genel Bakış, Zorluklar ve Gelecek Yönelimler(IEEE, 2019) Arslan, Şuayb Şefik; Güney, Osman B.Çok sınıflı sınıflandırma problemini çözmenin en etkili yollarından biri, bir grup akıllıca tasarlanmıs ikili sınıflandırıcı kullanarak, sınıflandırıcı sonuçlarını belli bir kritere göre bir araya getirmektir. Hata Düzeltme Çıktı Kodları (HDÇK) birden fazla ikili sınıflandırma yoluyla is bölümü saglayan basarılı tekniklerden biridir. Bu çalışmamızın amacı modern HDÇK tiplerine kısa bir giris yapmak, ikili sınıflandırma sonuçlarını birlestiren çesitli kod çözme yöntemleri ve zorlukları, avantajları ve dezavantajlarını ortaya koyan karsılastırmalı bir çalısma sunmaktır. Ayrıca HDÇK tekniğinin birkaç önemli uygulaması, MNIST veri seti üzerindeki performansı ve gelecekteki egilimlerin bazıları sunulmaktadır.Conference Object Citation - Scopus: 5High-Performance Real-Time Data Processing: Managing Data Using Debezium, Postgres, Kafka, and Redis(IEEE, 2023) Çakar, Tuna; Ertuğrul, Seyit; Arslan, Şuayip; Sayar, Alperen; Akçay, AhmetThis research focuses on monitoring and transferring logs of operations performed on a relational database, specifically PostgreSQL, in real-time using an event-driven approach. The logs generated from database operations are transferred using Apache Kafka, an open-source message queuing system, and Debezium running on Kafka, to Redis, a non-relational (No-SQL) key-value database. Time-consuming query operations and read operations are performed on Redis, which operates on memory (in-memory), instead of on the primary database, PostgreSQL. This approach has significantly improved query execution performance, data processing time, and backend service performance. The study showcases the practical application of an event-driven approach using Debezium, Kafka, Redis, and relational databases for real-time data processing and querying.Research Project İmece-depo: İşbirlikçi Hücresel Ağlarda Veri Önbellekleme için Cihazdan Cihaza Iletişim ile Dağıtık Depolama, Optimale Yakın Kodlama ve Protokol Tasarımı.(2023) Haytaoğlu, Elif; Pourmandı, Massoud; Kaya, Erdi; Arslan, Şefik ŞuaybHücresel ağlarda popüler dosyaların cihazlarda önbelleklenmesi ile, cihazlar arası etkileşim baz istasyonu (Bİ) üzerine düşen iletişim yükünü oldukça azaltmaktadır. Dağıtık veri önbellekleme işlemi popüler bir dosyanın parçalarının kodlanmamış orijinal haliyle ya da herhangi bir silinti kodu kullanılarak kodlanmış halinin mobil cihazlar içerisinde dağıtık bir şekilde depolanması yardımıyla gerçekleştirilir. Dosyanın herhangi bir parçası, komşu mobil cihazlardan ya da mümkün değilse, doğrudan Bİ?lerden, yüksek bir iletişim maliyeti pahasına indirilebilir. Bir hücresel ağda, rastgele zamanlarda bazı düğümlerin hücreye katıldığı ve bazılarının ayrıldığı göz önüne alındığında, performans için Bİ ile iletişimin minimum düzeyde olmasını sağlayacak akıllı veri onarım yöntemlerine ihtiyaç duyulacaktır. Tek bir veya birden fazla Bİ?nin sisteme katılımı, önceki onarım paradigmalarına, özellikle de işbirlikçi düğüm onarım süreçlerine farklı bir boyut eklemektedir. Bunun nedeni, çalışma protokolü kurallarının yanı sıra iletişim kısıtlamalarının da değişmesidir. Literatür, bu durum için temel bant genişliği/depolama ödünleşim uzayını inceleyen bir çalışma içermemektedir. Yeni hücre mimarileri buna göre, yeni silinti kod yapılarını, verimli protokol tasarımlarını, veri erişim gecikmesi, gerçekçi kuyruk modelleri ve gerçekçi benzetim platformları dahil ancak bunlarla sınırlı olmamak üzere farklı tasarım değerlendirmelerini gerektirmektedir. Bu projede ilk olarak, daha önceki hiçbir çalışmada düşünülmemiş işbirliği yapan Bİ?lerin cihaz ayrılışlarında yaşanan kayıp verinin onarımı için bant genişliği ve depolama kapasitesinin iyileştirilmiş teorik sınırlarının veri akış diyagramları kullanılarak elde edilmesi amaçlanmıştır. Bununla beraber, bant genişliği ve depolama alanını en iyi kullanan kod yapılarından esinlenerek, veri önbellekleme işlemini optimale yakın bir maliyetle gerçekleştirecek tamamen özgün çizge tabanlı kod yapıları ve bu yeni kodlar için daha önce düğüm onarım problemine uygulanmamış genetik algoritma, optimize edilmiş artık veri dağıtımı gibi yeni yaklaşımlar kullanılarak önceden düşünülmemiş düğüm onarım algoritmaları önerilecektir. Ayrıca, düğümlerin hücreye katılma ve ayrılma süreçleri için, bant genişliği ve veri depolaması gereksinimlerini en aza indirmeye yardımcı olacak enerji tüketimi odaklı son derece özgün protokoller önerilecektir. Bu protokoller, düğümlerin bir hücreden diğerine geçiş yapabileceği ve hücre içi kaynakların etkin kullanılmasına yardımcı olmak için Bİ?lerin işbirliği yapmasını sağlayan geçiş senaryoları ile güçlendirilecektir. Bu durum, iki onarım işlemi arasındaki sürenin ayarlanması, veri erişim maliyetlerinin azaltılması, hücreye katılan düğüm içeriğinin kullanımı, artık veri kullanımı v.s. gibi yenilikleri içerecektir. Son olarak, önerilen kod yapıları ve protokol mimarisinin performansını analitik olarak türetmek için bilinen çeşitli ve daha gerçekçi kuyruklama modelleri değerlendirilecektir. Analitik sonuçlarımızı doğrulamak için daha sonra hücresel ağ tabanlı büyük ölçekli benzetimler yapılıp sayısal yöntemler ile toplam iletişim ve dosya onarım işlemlerinin maliyet hesaplamaları ve karşılaştırmaları yapılacaktır. MEF Üniversitesi öğretim üyesi Dr. Şuayb Arslan?ın yürütücüsü olduğu ve 36 ay sürecek projede, Pamukkale üniversitesi Bilgisayar Mühendisliği Bölümü öğretim üyesi Dr. Elif Haytaoğlu araştırmacı olarak görev alacaktır. Projede, iki doktora, iki yüksek lisans ve son iki senemizde iki lisans öğrencisi bursiyer olarak görev alacaktır.Conference Object Citation - WoS: 2Citation - Scopus: 2Implementation of Multi-Threaded Erasure Coding Under Multi-Processing Environments(2016) Arslan, Şuayb ŞefikGalois alan aritmetiği depolama ve iletişim cihazlarını veri kayıplarına karşı korumak için Reed-Solomon silme kodlarının temelini oluşturmaktadır. Galois alan aritmeti^ginin en güncel uygulamaları hızlı Galois alan hesaplamaları yapmamıza imkan sağlayan Intel’in SIMD eklerinde olduğu gibi 128-bitlik işlemci vektör talimatlarına dayanmaktadır. Buna rağmen, bu uygulamalar çoklu–dizin ve çoklu–süreçli ortamlara göre optimize edilmemiştir. Diğer taraftan, sunucuların çoklu istekleri eş zamanlı olarak yerine getirmesi ve donanımın sağladığı tüm paralelliği kodlama yükünü etkili yürütmek için kullanması arzu edilmektedir. Bu makale silme kodlarının çoklu-dizin işlemcilerle çoklu–süreçli ortamlarda nasıl kullanılaca^gının detaylarını sunmakta ve tek dizinli uygulamalara göre emtia mikro işlemciler ve Jerasure 2.0 yazılım kütüphanesini kullanarak önemli ölçüde performans artışının olabileceğini göstermektedir.Conference Object Citation - Scopus: 1Liking Prediction Using fNIRS and Machine Learning: Comparison of Feature Extraction Methods(IEEE, 2022) Koksal, Mehmet Yigit; Çakar, Tuna; Demircioğlu, Esin Tuna; Girisken, YenerThe fMRI method, which is generally used to detect behavioral patterns, draws attention with its expensive and impractical features. On the other hand, near infrared spectroscopy (fNIRS) method is less expensive and portable, but it is as effective as fMRI in creating a good prediction model. With this method, a model has been developed that can predict whether people like a stimulus or not, using machine learning various algorithms. A comparison was made between feature extraction methods, which was the main focus while developing the model.Conference Object Model for Estimating the Probability of a Customer To Have a Transaction(IEEE, 2022) Sayar Alperen; Çakar Tuna; Ertugrul Seyit; Bozkan TunahanIn this study, it is aimed to estimate the probability of a customer who comes to the institution for the first time to make a transaction in the next 3 months, using data-driven machine learning models, in order to provide financing to the seller company by assigning the receivables arising from the sale of goods and services in a company actively operating in the factoring sector. Accordingly, it was aimed to directly contribute to the transaction volume on a business basis by acting and taking action with more effective, efficient and correct approaches by finding high-potential and low-potential customers. In this context, provided by KKB (Credit Registration Bureau); The data set to he used in machine learning models was created with feature engineering and exploratory data analysis, using the Risk, Mersis, GIB information of the prospective customers and the historical information of the customers, check issuers, customer representatives and branches kept in the database. Since the leads coming to the institution are in two different types of organizations (Individual and Legal), two different forecasting models were applied. Multiple classification models were tried, and the highest F1-Score of 86% for private companies was obtained with the Random Forest model, and the highest F1- Score for commercial companies was obtained with the Random Forest model with 82%. © 2022 IEEE.Conference Object Citation - Scopus: 1Modeling Consumer Creditworthiness Via Psychometric Scale and Machine Learning(IEEE, 2022) Çakar, Tuna; Ertugrul, Seyit; Sayar, Alperen; Sahin, Türkay; Bozkan, TunahanAlthough the predictive power of economic metrics to detect the creditworthiness of the customers is high, there is a rising interest in the integration of cognitive, psychological, behavioral, alternative, and demographic data into credit risk systems and processing the data through modern methods. The primary motivation for the rising interest is increased customer classification accuracy. In this research, customer creditworthiness was modeled through data consisting of personality, money attitudes, impulsivity, self-esteem, self-control, and material values and processed through artificial intelligence. The obtained findings have been evaluated as a reference point for the following research. © 2022 IEEE.

