WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/256
Browse
Browsing WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection by Language "tr"
Now showing 1 - 20 of 40
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 1A Microwave Imaging Scheme for Detection of Pulmonary Edema and Hemorrhage(IEEE, 2022) Ertek, Didem; Kucuk, Gokhan; Bilgin, EgemenThe microwave imaging systems have the potential to present a cost effective and less hazardous alternative to conventional medical imaging techniques. In this paper, a Contrast Source Inversion method based microwave imaging scheme is proposed and tested for the detection of pulmonary edema and hemorrhage. To this end, a realistic human torso phantom is used, and the electromagnetic parameters of the human tissues is determined via Cole-Cole model. The scattered field is simulated via Method of Moments at the operating frequency of 350 MHz, and a 50 dB white Gaussian noise is added to model a realistic measurement setup. The numerical tests performed with the proposed technique suggest that the method can be used to locate the pulmonary edema and hemorrhage, and it is capable of distinguishing these two medical conditions successfully.Conference Object Citation - Scopus: 2A Visualization Platfom for Disk Failure Analysis(IEEE, 2018) Arslan, Şuayb Şefik; Yiğit, İbrahim Onuralp; Zeydan, EnginIt has become a norm rather than an exception to observe multiple disks malfunctioning or whole disk failures in places like big data centers where thousands of drives operate simultaneously. Data that resides on these devices is typically protected by replication or erasure coding for long-term durable storage. However, to be able to optimize data protection methods, real life disk failure trends need to be modeled. Modelling helps us build insights while in the design phase and properly optimize protection methods for a given application. In this study, we developed a visualization platform in light of disk failure data provided by BackBlaze, and extracted useful statistical information such as failure rate and model-based time to failure distributions. Finally, simple modeling is performed for disk failure predictions to alarm and take necessary system-wide precautions.Conference Object Citation - Scopus: 2Alternative Data Sources and Psychometric Scales Supported Credit Scoring Models(IEEE, 2023) Şahin, Türkay; Filiz, Gözde; Çakar, Tuna; Özvural, Özden Gebizlioğlu; Nicat, ŞahinThis study aims to evaluate individuals with limited access to banking services and enhance credit scoring models with alternative data sources. A psychometric-based credit scoring model was developed and tested. Despite limited data, significant potential findings were obtained. However, clarification of the distinction between credit payment intention and ability and validation of the results with more data are necessary.Conference Object Citation - WoS: 14Citation - Scopus: 40An Overview of Blockchain Technologies: Principles, Opportunities and Challenges(IEEE, 2018) Arslan, Şuayb Şefik; Mermer, Gültekin Berahan; Zeydan, EnginBlokzincir, toplumumuzun birbiriyle iletişim kurma ve ticaret yapma biçiminde devrim yapma potansiyeline sahip, yakın zamanda ortaya çıkmış olan bir teknolojidir. Bu teknolojinin sağladığı en önemli avantaj aracı gerektiren bir oluşumda güvenilir bir merkezi kuruma ihtiyaç duymadan değer taşıyan işlemleri değiş tokuş edebilmesidir. Ayrıca, veri bütünlüğü, dahili orijinallik ve kullanıcı şeffaflığı sağlayabilir. Blokzincir, birçok yenilikçi uygulamanın temel alınacağı yeni internet olarak görülebilir. Bu çalışmada, genel çalışma prensibi, oluşan fırsatlar ve ileride karşılaşılabilecek zorlukları içerecek şekilde güncel blokzincir teknolojilerinin genel bir görünümünü sunmaktayız.Article Bitişik Yapıların Deprem Performanslarının Ayrı veya Bitişik Olarak Kırılganlık Eğrileri Yardımı ile İncelenmesi(2015) Akbulut, Ali; Boduroğlu, M. HasanMevcut yapıların deprem performans, risk ve güçlendirme analizlerinde, yanındaki yapı ile olan ilişkisini uygun modelleme teknikleri ile analiz aşamasının içine dâhil ederek, sonuçların tekbaşına analiz edilmiş binalara göre olan farklılıklarını incelemek önemli bir konu olarak ortaya çıkmaktadır. Bu çalışmada, literatürdeki komşu binaların birbirleri ile olan etkileşim modelleri, statik itme analizi ve doğrusal olmayan hesap yöntemleri, deprem ivme kayıtlarının bir veri tabanından alınması ve tasarım spektrumuna göre ölçeklenmesi, zaman tanım alanına göre hesap yöntemi, hareket denkleminin Newmark-b yöntemi ile sayısal çözümü ve kırılganlık eğrileri ile bina performans seviyelerinin belirlenmesi konuları incelenmiştir. Bitişik (komşu) ve birbirine benzer binaların, deprem performanslarının birbirileri ile olan etkileşimli ve deprem yönüne göre değişen bir şekilde yapı blokları olarak ele alınıp, hasar görebilirlik-kırılganlık eğrileri yönünden değerlendirilmeleri incelenmiş ve binaların ayrı ayrı analiz edildikleri duruma göre daha farklı sonuçlar verdiği tespit edilmiştir.Conference Object Citation - WoS: 2Citation - Scopus: 2Classification of Altruistic Punishment Decisions by Optical Neuroimaging and Machine Learning Methods(IEEE, 2023) Erözden, Ozan; Şahin, Türkay; Akyürek, Güçlü; Filiz, Gözde; Çakar, TunaAltruistic punishment (third-party punishment) is important in terms of maintaining social norms and promoting prosocial behavior. This study examined data obtained using the near infrared spectroscopy (fNIRS) method to predict altruistic punishment decisions. It was found that specific neural activity patterns were significantly related to decisions regarding the punishment of the perpetrator. This research contributes to the development of social decision-making models and helps advance our understanding of the cognitive and neural processes involved in third-party punishments.Article Citation - WoS: 35Covid-19 Sonrası Yükseköğretim(Deomed, 2020) Erkut, ErhanHigher education is one of the most severely impacted sectors by Covid-19. Almost all schools worldwide had to stop face-to-face education and approximately 2 billions students were forced to get their education online. This pandemic demonstrated that the Turkish higher education system was not well-prepared for a crisis of this proportion, nor was it ready for effective online teaching. High-quality online education is a fact of life now, and administrators, as well as faculty members have an important task on hand. In this opinion piece, 1 offered some ideas about improving the quality of online education, and discussed other impacts of this pandemic on higher education, along with some warnings. I believe this pandemic offers an opportunity for the outdated higher education system worldwide and the universities (and countries) that adopt quickly will be the winners.Conference Object Customer Segmentation and Churn Prediction via Customer Metrics(IEEE, 2022) Bozkan, Tunahan; Cakar, Tuna; Sayar, Alperen; Ertugrul, SeyitIn this study, it is aimed to predict whether customers operating in the factoring sector will continue to trade in the next three months after the last transaction date, using data-driven machine learning models, based on their past transaction movements and their risk, limit and company data. As a result of the models established, Loss Analysis (Churn) of two different customer groups (Real and Legal factory) was carried out. It was estimated by the XGBoost model with an F1 Score of 74% and 77%. Thanks to this modeling, it was aimed to increase the retention rate of customers through special promotions and campaigns to be made to these customer groups, together with the prediction of the customers who will leave. Thanks to the increase in retention rates, a direct contribution to the transaction volume on a company basis was ensured.Conference Object Citation - WoS: 2Citation - Scopus: 2Data Repair in Bs-Assisted Distributed Data Caching(IEEE, 2020) Kaya, Erdi; Haytaoğlu, Elif; Arslan, Şuayb ŞefikIn this paper, centralized and independent repair approaches based on device-to-device communication for the repair of the lost nodes have been investigated in a cellular network where distributed caching is applied whose fault tolerance is provided by erasure codes. The caching mechanisms based on Reed-Solomon codes and minimum bandwidth regenerating codes are adopted. The proposed approaches are analyzed in a simulation environment in terms of base station utilization load during the repair process. Based on the intuitive assumption that the base station is usually more costly than device-to-device communication, the centralized repair approach demonstrates a better performance than the independent repair approaches on the number of symbols retrieved from the base station. On the other hand, the centralized approach has not achieved a dramatic reduction in the number of symbols downloaded from the other devices.Conference Object Determination of Alzheimer's Disease Levels by Ordinal Logistic Regression and Artificial Learning Algorithms(Ieee, 2024) Bulut, Nurgül; Çakar, Tuna; Arslan, Ilker; Akinci, Zeynep Karaoglu; Oner, Kevser SetenayThis study compares artificial learning algorithms and logistic regression models in determining different levels of Alzheimer's disease (AD). The research uses demographic, genetic, and neurocognitive inventory results obtained from the National Alzheimer's Coordination Center (NACC) database, along with brain volume/thickness measurements derived from MRI scanners. Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM models were employed to determine the 4 different ordinal levels of AD. Although there were similarities between the accuracy rate, F1 score, AUC value, and sensitivity, specificity, and precision performance measures of each class, the highest classification rate was achieved by the Random Forest model where the oversampling was not applied. (F1 score: 0.86; accuracy: 0.86 and AUC: 0.95). The outputs of the model with the best performance were explained with the SHAP (SHapley Additive exPlanations) method. These findings indicate that non-invasive markers and artificial learning models can be used effectively in early diagnosis and decision support systems to predict different levels of Alzheimer's disease.Conference Object Dialogue Enhancement Using Kernel Additive Modelling(Institute of Electrical and Electronics Engineers Inc., 2015) Liutkus, A.; Kırbız, Serap; Cemgil, A. TaylanIt is a major problem for the sound engineers to find the right balance between the dialogue signals and the ambient sources. This problem also makes one of the main causes of the audience concerns. The audience wants to arrange the sound balance based on their personal preferences, listening environment and their hearing. In this work, a method is proposed for enhancing the dialogue signals in stereo recordings that consist of more than one source. The kernel additive modelling that has been used successfully in sound source separation is used to extract the dialogues and the ambient sources from the movie sounds. The separated dialogue and ambient sources can later be upmixed by the user to make a personal mix. The separation performance of the proposed method is evaluated on the sounds generated by mixing the sources which were taken from the only dialogue and only music parts of the movies. It has been shown that the Kernel Additive Modelling (KAM) based method can be successfully used for dialogue enhancement. © 2015 IEEE.Conference Object Citation - Scopus: 1Distinguishing Cognitive Processes: a Machine Learning Approach To Decode Fnirs Data for Third-Party Punishment and Credit Decision-Making(Ieee, 2024) Filiz, Gozde; Son, Semen; Sayar, Alperen; Ertugrul, Seyit; Sahin, Turkay; Akyurek, Guclu; Çakar, TunaFunctional near-infrared spectroscopy (fNIRS) has seen increasingly widespread use in examining brain activity and cognitive processes. However, the existing literature provides insufficient information on distinguishing between different decision-making mechanisms. This study explores the application of fNIRS in differentiating between two distinct decision-making processes: third-party punishment decisions and credit decisions. The research includes analyzing fNIRS data collected during these processes and classifying the associated neural patterns using machine learning. The findings reveal that fNIRS, in conjunction with ML, holds substantial potential to enhance the depth of understanding of decision-making processes in neuroscience research.Conference Object Dog Walker Segmentation(IEEE, 2022) Ercan, Alperen; Karan, Baris; Çakar, TunaIn this study dog walkers were separated into clusters according to walkers' walk habits. Due to the fact that the distributions were non-normal, normalization algorithms were applied before the onset of clustering. After normalizing, K Means algorithm and Gaussian Mixture Models used for finding optimum cluster count. According to these clusters, walkers' consecutive months separated to follow-up their behavioral traits. This part of the study adds value to the project to examine walkers' behaviors closer.Conference Object Citation - WoS: 1Citation - Scopus: 1Domain Adaptation Approaches for Acoustic Modeling(IEEE, 2020) Arısoy, Ebru; Fakhan, EnverIn the recent years, with the development of neural network based models, ASR systems have achieved a tremendous performance increase. However, this performance increase mostly depends on the amount of training data and the computational power. In a low-resource data scenario, publicly available datasets can be utilized to overcome data scarcity. Furthermore, using a pre-trained model and adapting it to the in-domain data can help with computational constraint. In this paper we have leveraged two different publicly available datasets and investigate various acoustic model adaptation approaches. We show that 4% word error rate can be achieved using a very limited in-domain data.Conference Object Evaluating Electrophysiological Responses Due To Identity Judgments(Ieee, 2024) Çakar, Tuna; Hohenberger, AnnetteThis study was conducted to explore how the brain processes decisions about identity, employing event-related potentials (ERPs) as a measure. The aim was to ascertain if the EEG/ERP technique could be used to monitor the cognitive processing of identity judgments as they happen. The investigation focused on comparing two groups of statements: those that used the concept of 'same' and those that used 'different'. The researchers hypothesized that there would be notable differences in the ERPs, particularly around the 400-millisecond mark, correlating with the reaction time disparities observed behaviorally. The ERP data revealed that the 'different' statements generated a unique N400 response when contrasted with the 'same' statements, implying that the participants' cognitive responses to these two types of judgments were not the same.Conference Object Citation - WoS: 1Citation - Scopus: 1Face Recognition With Local Zernike Moments Features Around Landmarks(IEEE, 2016) Gökmen, MuhittinIn this paper, a new method that extracts the features from the complex Local Zernike Moments (LZM) images around facial landmarks is proposed. In this method, multiple grids which are in different sizes are located on landmarks and Phase-Magnitude (PM) histograms are calculated in each cells of these grids. The PM histograms are calculated for every component of LZM and the feature vectors are created by concatenating these histograms. By reducing the dimensionality of these vectors using Whitened Principle Component Analysis, more robust descriptors are constructed. It is shown that the state-of-the-art results are obtained in the experiments performed on FERET database using the proposed method. © 2016 IEEE.Conference Object Feature Enrichment Via Similar Trajectories for Xgboost Based Time Series Forecasting(Ieee, 2024) Yilmaz, Elif; Islak, Umit; Çakar, Tuna; Arslan, IlkerIn this study, new time series forecasting models are developed based on XGBoost, and the similar trajectories method (ST), which can be interpreted as a regression based on nearest neighbors. Both the similar trajectories method and XGBoost model are known to have successful applications in traffic flow prediction. In our case, the focus is on similar trajectories used in the former method, and features based on these trajectories are used in the training of XGBoost. The success of the proposed models is confirmed through metrics such as the mean absolute error. Also, statistical tests are performed among the compared benchmark models. The study is concluded with discussions and questions about how these models can be further developed.Conference Object Citation - WoS: 1Citation - Scopus: 1Hata Düzeltme Çıktı Kodları: Genel Bakış, Zorluklar ve Gelecek Yönelimler(IEEE, 2019) Arslan, Şuayb Şefik; Güney, Osman B.Çok sınıflı sınıflandırma problemini çözmenin en etkili yollarından biri, bir grup akıllıca tasarlanmıs ikili sınıflandırıcı kullanarak, sınıflandırıcı sonuçlarını belli bir kritere göre bir araya getirmektir. Hata Düzeltme Çıktı Kodları (HDÇK) birden fazla ikili sınıflandırma yoluyla is bölümü saglayan basarılı tekniklerden biridir. Bu çalışmamızın amacı modern HDÇK tiplerine kısa bir giris yapmak, ikili sınıflandırma sonuçlarını birlestiren çesitli kod çözme yöntemleri ve zorlukları, avantajları ve dezavantajlarını ortaya koyan karsılastırmalı bir çalısma sunmaktır. Ayrıca HDÇK tekniğinin birkaç önemli uygulaması, MNIST veri seti üzerindeki performansı ve gelecekteki egilimlerin bazıları sunulmaktadır.Conference Object Highlighting of Lecture Video Closed Captions(IEEE, 2020) Yıldırım, Göktuğ; Öztufan, Huseyin Efe; Arısoy, EbruThe main purpose of this study is to automatically highlight important regions of lecture video subtitles. Even though watching videos is an effective way of learning, the main disadvantage of video-based education is limited interaction between the learner and the video. With the developed system, important regions that are automatically determined in lecture subtitles will be highlighted with the aim of increasing the learner's attention to these regions. In this paper first the lecture videos are converted into text by using an automatic speech recognition system. Then continuous space representations for sentences or word sequences in the transcriptions are generated using Bidirectional Encoder Representations from Transformers (BERT). Important regions of the subtitles are selected using a clustering method based on the similarity of these representations. The developed system is applied to the lecture videos and it is found that using word sequence representations in determining the important regions of subtitles gives higher performance than using sentence representations. This result is encouraging in terms of automatic highlighting of speech recognition outputs where sentence boundaries are not defined explicitly.Conference Object Citation - WoS: 1Citation - Scopus: 1İlişkisel Veri Ayrıştırılmasında Model Seçimi(IEEE, 2019) Kırbız, Serap; Cemgil, Taylan; Hızlı, ÇağlarAbstract—As a fundamental problem in relational data analysis, model selection for relational data factorization is still an open problem. In our work, we propose to estimate model order for mixed membership blockmodels (MMSB) within the generic allocation framework of Bayesian allocation model (BAM). We describe how relational data is represented as Poisson counts of the allocation model, and demonstrate our results both on synthetic and real-world data sets. We believe that the generic allocation perspective promises a generalized model selection solution where we do not only select the model order, but also choose the most appropriate factorization.
