Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by browse.metadata.publisher "Elsevier"
Now showing 1 - 20 of 22
- Results Per Page
- Sort Options
Editorial 17th International Conference on Mechatronics Technology, October 15-18, 2013, Jeju Island, Korea(Elsevier, 2015) Hwang, Sung Ho; Kim, Joon-wan; Dorantes-Gonzalez, Dante JorgeIn recent years, Mechatronics has gained a lot of interest as more applications have been introduced to industry and society. The need for new mechatronic technologies in the form of advanced production systems, mechatronic devices, control systems, robotics, biomedical applications, MEMS, and measurement systems, among others, is very much required in improving productivity and competitiveness in many industries. Thus, this conference was organized to address the state-of-the-art technology for the benefit of researchers and users, and this time the conference made a special focus on the topic: Sustainable Mechatronics Technology.Book Part Citation - Scopus: 518 - Acoustic and Mechanical Properties of Biofibers and Their Composites(Elsevier, 2022) Koç, Büşra; Genç, Garip; Körük, HasanIn this study, the acoustic and mechanical properties of many biofibers and their composites are presented. First, the sound absorption coefficients and transmission losses of commonly used natural fibers and their composites are presented, by clearly reporting the thickness of the samples, for three different frequency ranges (<500 Hz: low, 500–2000 Hz: medium, and >2000 Hz: high). In addition, the sound absorption coefficients (for low- and medium-frequency ranges) and noise reduction coefficients of some 40-cm-thick samples are overlaid in order to directly compare their performances. Second, the physical properties, such as the density, diameter, and length of biofibers, and mechanical properties, such as the damping (or loss factor) and Young’s modulus of biofibers and their composites, are presented in detail. For comparison purposes, the acoustic and mechanical properties of some conventional materials, such as carbon and glass fibers, are included in the tables and figures. Finally, the effects of some parameters, such as pretreatment, fiber diameter, fiber/matrix ratio, moisture content, manufacturing and machining parameters/techniques, and measurement conditions/methods, on the acoustic and mechanical properties of natural materials are presented. Furthermore, current applications and potential usage areas of natural fibers are briefly discussed.Book Part Citation - Scopus: 319 - Identification of the Elastic and Damping Properties of Jute and Luffa Fiber-Reinforced Biocomposites(Elsevier, 2022) Genç, Garip; Saygılı, Yusuf; Körük, Hasan; Şanlıtürk, Yusuf KenanAlthough there are many studies in the literature on the static mechanical properties of biomaterials such as tensile strength, the dynamic mechanical properties of biomaterials such as modal loss factors have not been investigated in detail. In this study, the Young’s moduli and damping (or loss factors) of some jute and luffa fiber-reinforced biocomposites are investigated. The effects of fiber/resin ratio and thickness on the mechanical properties of the jute and luffa composites are identified via an experimental approach. For this purpose, acoustic and structural frequency response functions of some homogeneous and hybrid jute and luffa composite plates with different fiber/resin ratios and thicknesses are measured. By analyzing the measured frequency response functions using the circle-fit method, the modal frequencies and loss factors of the homogeneous and hybrid composite plates are determined. By assuming that the homogeneous plates are isotropic, the same plates are modeled using the finite element method, and by comparing the experimental and theoretical natural frequencies, the elastic properties of the homogeneous plates are determined. In addition, the same homogeneous plates are modeled by considering an anisotropic material model, and the associated material properties are determined. By using the identified material properties, the finite element models of the hybrid composite plates are developed, and by comparing their experimental and theoretical natural frequencies, the identified elastic material properties are evaluated and validated.Article Citation - WoS: 9Citation - Scopus: 12A New Triangular Composite Shell Element With Damping Capability(Elsevier, 2014) Körük, Hasan; Şanlıtürk, Kenan YüceThis paper presents a new triangular composite shell element with damping capability. Formulation of the composite triangular shell element is based on stacking individual homogeneous triangular shell ele- ments on top of each other. The homogeneous shell element is an assembly of a triangular membrane element with drilling degrees of freedoms and a plate element. Damping capability is provided by means of complex element stiffness matrix of individual flat layers of the composite element. These elements with damping capability allow modelling general structures with damping treatments. A few test cases are modelled using triangular finite element developed here and the results of the complex eigenvalue analyses are compared with those of the quadrilateral shell elements proposed recently. The results obtained using the presented triangular and previous quadrilateral composite elements are also com- pared with those based on modal strain energy method and experimental results. Comparisons of the experimental and the theoretical results confirm that the modal properties including modal damping lev- els of structures with damping treatments can be predicted with high accuracy using the proposed finite element.Book Part Citation - WoS: 27Citation - Scopus: 33Acoustic and Mechanical Properties of Luffa Fiber-Reinforced Biocomposites(Elsevier, 2019) Genç, Garip; Körük, HasanThis chapter presents an overview of acoustic and mechanical behaviors of luffa fiber reinforced biocomposites. A growing number of studies are examining the composites of biodegradable fibers such as flax, hemp, kenaf and luffa due to the adverse effects of chemical materials on nature. The low cost and superior acoustic and acceptable mechanical properties of biocomposites make them very attractive for practical applications such as sound and vibration isolation. However, the acoustic and mechanical characteristics of biocomposites and their dynamic behaviors should be fully determined before considering them for practical applications. In this chapter, acoustic properties, such as sound absorption and transmission loss, and mechanical properties, such as damping and elasticity of luffa fiber reinforced composites, are presented. The variations in acoustic and mechanical properties due to different samples and manufacturing process are explored.Article Citation - WoS: 12Citation - Scopus: 15Acoustic Streaming in a Soft Tissue Microenvironment(Elsevier, 2019) El Ghamrawy, Ahmed; Mohammed, Ali; Jones, Julian R; Körük, Hasan; Choi, James J; de Comtes, FlorentinaWe demonstrated that sound can push fluid through a tissue-mimicking material. Although acousticstreaming in tissue has been proposed as a mechanism for biomedical ultrasound applications, such as neuromodu-lation and enhanced drug penetration, streaming in tissue or acoustic phantoms has not been directly observed. Wedeveloped a material that mimics the porous structure of tissue and used a dye and a video camera to track fluidmovement. When applied above an acoustic intensity threshold, a continuous focused ultrasound beam (spatialpeak time average intensity: 238 W/cm2, centre frequency: 5 MHz) was found to push the dye axially, that is, in thedirection of wave propagation and in the radial direction. Dye clearance increased with ultrasound intensity andwas modelled using an adapted version of Eckart’s acoustic streaming velocity equation. No microstructuralchanges were observed in the sonicated region when assessed using scanning electron microscopy. Our study indi-cates that acoustic streaming can occur in soft porous materials and provides a mechanistic basis for future use ofstreaming for therapeutic or diagnostic purposes.Article Citation - WoS: 4Citation - Scopus: 4Application of Ultrasonic Vibrations for Minimization of the Accumulation of Limescale in Steam Irons(Elsevier, 2018) Körük, Hasan; Şanlıtürk, Kenan Yüce; Serenli, MuzafferThe accumulation of limescale in steam irons can significantly reduce the ironing efficiency. It is this problem that inspired us to introduce ultrasonic vibrations to irons in order to minimize limescale accumulation. This study describes a methodology for designing, modelling and optimizing an iron fitted with an ultrasonic exciter in an attempt to minimize limescale accumulation. In our methodology, first, an experimental demonstration of the potential benefits of ultrasonic vibrations in steam irons was conducted, using two existing irons, one of which was equipped with an ultrasonic exciter. Having confirmed the benefits, an experimental iron was designed and then optimized to maximise ultrasonic vibrations using finite element analyses within a predefined frequency range. To validate the results of the finite element analyses, a prototype iron base was built, and forced vibrations of this prototype, at ultrasonic frequencies ranging from 35 to 40 kHz, were measured using a laser vibrometer. The results of the theoretical and experimental vibration analyses as well as the physical experiments on the steam irons indicate that it is possible for ultrasonic vibrations to be utilized in irons to minimize the accumulation of limescale.Article Citation - WoS: 6Citation - Scopus: 10Detection of Air Leakage Into Vacuum Packages Using Acoustic Measurements and Estimation of Defect Size(Elsevier, 2019) Körük, Hasan; Şanlıtürk, Kenan YüceAir leakages in food and ingredient packages which are sealed in vacuum environments may cause a marked deterioration of the product, leading to a loss of functionality. Manufacturers of such products have very stringent but rather costly quality control procedures and there is a pressing need for developing more economical ways of automated quality control techniques to test the vacuum packages reliably. However, due to the fact that the defect size of a typical package with a leakage problem could be micro- or nano-scale, such faults are not detectable using conventional techniques. In this paper, the performance of a proposed acoustic method is assessed for the detection of air leakage in instant dry yeast packages sealed in a vacuum environment, which are typical of food and ingredients packaged under vacuum conditions. The investigation is carried out in both laboratory and in-situ environments. The acoustic pressure created by leaking air into the faulty packages is measured using a low-noise microphone in an acoustic chamber. Faulty packages are then identified using the changes in measured sound pressure levels within a certain frequency band. A mathematical model is also proposed to predict the pressure inside a yeast package with certain defect size as a function of time. The mathematical model is then used to determine the size of a defect causing the leakage, using the time required for the pressure inside a faulty yeast package to reach to a threshold level. The results of this investigation show that, using the state of the art measurement techniques, it is possible to detect packages with leakage problem if the diameter of the defect is greater than a few tens of micrometres.Article Citation - WoS: 27Citation - Scopus: 28Development of a New Integrated Energy System With Compressed Air and Heat Storage Options(Elsevier, 2020) Javania, Nader; Dinçer, İbrahim; Karapekmez, ArasThe present study investigates a biomass driven power plant integrated with compressed air and thermal energy storage subsystems. Compressed air energy storage system exploits the pressurized air at non-peak periods to be used in peak times when there is a need for extra energy. Thermal energy storage systems including phase change material, allow the solar subsystem to operate independently in order to produce hot air when solar irradiation is insufficient. The energy stored in the present system is then supplied to both the gasifier and combustion chamber in order to achieve a higher combustion efficiency. Three different phase change materials (PCMs) are investigated and their efficiencies are comparatively evaluated. Among the considered PCMs, LiNO3 is the most suitable material for the considered system with 82% energy efficiency and 84% exergy efficiency. The current study also aims at designing a renewable energy based power plant which operates continuously through using storage subsystems and is more environmental benign compared to fossil fuel based conventional systems. In this regard, wet wood (CH1.46O0.64N0.002) with 15% moisture content is selected as a fuel instead of fossil-based fuels in order to reduce the greenhouse gas emissions and eliminate the dep endency on fossil fuels. A comprehensive thermodynamic analysis is conducted to evaluate the entropy generations, exergy destructions, and energy and exergy efficiencies. The highest overall energy and exergy efficiencies are obtained as 28.58% and 24.08% in the discharging period, respectively.Article Citation - WoS: 31Citation - Scopus: 34Development of a New Solar, Gasification and Fuel Cell Based Integrated Plant(Elsevier, 2021) Dinçer, İbrahim; Karapekmez, ArasDespite its shortcomings, fossil-based fuels are still utilized as the main energy source, accounting for about 80% of the world's total energy supply with about one-third of which comes from coal. However, conventional coal-fired power plants emit relatively higher amounts of greenhouse gases, and the derivatives of air pollutants, which necessitates the integration of environmentally benign technologies into the conventional power plants. In the current study, a H2–CO synthesis gas fueled solid oxide fuel cell (SOFC) is integrated to the coal-fired combined cycle along with a concentrated solar energy system for the purpose of promoting the cleaner energy applications in the fossil fuel-based power plants. The underlying motivation of the present study is to propose a novel design for a conventional coal-fired combined cycle without altering its main infrastructure to make its environmentally hazardous nature more ecofriendly. The proposed SOFC integrated coal-fired combined cycle is modeled thermodynamically for different types of coals, namely pet coke, Powder River Basin (PRB) coal, lignite and anthracite using the Engineering Equation Solver (EES) and the Ebsilon software packages. The current results show that the designed hybrid energy system provide higher performance with higher energy and exergy efficiencies ranging from 70.6% to 72.7% energetically and from 35.5% to 43.8% exergetically. In addition, carbon dioxide emissions are reduced varying between 18.31 kg/s and 30.09 kg/s depending on the selected coal type, under the assumption of 10 kg per second fuel inlet.Article Citation - WoS: 8Citation - Scopus: 10Development of an Equivalent Shell Finite Element for Modelling Damped Multi-Layered Composite Structures(Elsevier, 2020) Şanlıtürk, Kenan Y.; Özer, Mehmet Sait; Körük, HasanA new equivalent shell finite element (FE) for modelling damped multi-layered structures is presented in this study. The method used for developing the new FE for such structures is based on the idea that the strain energy of the equivalent single-layer FE must be equal to the sum of the strain energies of individual layers. The so-called energy coefficients are defined for this purpose for the extensional, bending and shear deformations of the composite structure. These coefficients are then determined and used as correction multipliers during stacking the elemental matrices of individual layers. Two approaches, based on second-order strain or stress distribution assumption through the composite thickness, are investigated for deriving the shear energy coefficients. The damping capability of the FE developed here originates from using complex Young's modulus to define the material properties of individual layers. The resulting equivalent single-layer shell element with four nodes has six degrees-of-freedom per node. The accuracy, advantages and limitations of the composite FE developed in this work are investigated using experimental as well as theoretical results. In the light of the finding of these investigations, further enhancement in the formulation is made by also utilising a new shear correction factor for the individual layers in the equivalent shell element. Final results for free- and constrained-layered structures confirm that the equivalent shell FE developed here can be used effectively for the prediction of the modal properties of damped multi-layered structures.Book Part Citation - Scopus: 3Effects of Machining on the Acoustic and Mechanical Properties of Jute and Luffa Biocomposites(Elsevier, 2023) Genç, Garip; Körük, HasanAfter their production, biocomposite structures do not always have the final shape or dimensions required for their purpose, hence, they need machining. However, the effects of machining on the acoustic and mechanical properties of many biocomposites are still not well known. The effects of machining on the acoustic and mechanical properties of jute and luffa biocomposites are revealed in this chapter. To do this, the sound absorption coefficients (or SACs) and transmission losses (or TLs) of jute and epoxy and luffa and epoxy composite samples, with and without a turning process, are determined using the impedance tube method. The loss factors and Young’s moduli of the jute and epoxy and luffa and epoxy composite samples, with and without a milling process, are identified using experimental and theoretical modal analyses. The results show that, when the samples are machined, the sound absorption coefficients reduce by 3%-7%, the transmission loss levels increase by 6-11dB, and the damping levels and Young’s moduli reduce by 0.1%-0.5% and 3%-4%, respectively. © 2023 Elsevier Ltd. All rights reserved.Article Citation - WoS: 12Citation - Scopus: 14Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force(Elsevier, 2020) Körük, Hasan; Bezer, James H.; J Rowlands, Christopher; Choi, James J.Mechanical effects of microbubbles on tissues are central to many emerging ultrasound applications. Here, we investigated the acoustic radiation force a microbubble exerts on tissue at clinically relevant therapeutic ultrasound parameters. Individual microbubbles administered into a wall-less hydrogel channel (diameter: 25–100 µm, Young's modulus: 2–8.7 kPa) were exposed to an acoustic pulse (centre frequency: 1 MHz, pulse length: 10 ms, peak-rarefactional pressures: 0.6–1.0 MPa). Using high-speed microscopy, each microbubble was tracked as it pushed against the hydrogel wall. We found that a single microbubble can transiently deform a soft tissue-mimicking material by several micrometres, producing tissue loading–unloading curves that were similar to those produced using other indentation-based methods. Indentation depths were linked to gel stiffness. Using a mathematical model fitted to the deformation curves, we estimated the radiation force on each bubble (typically tens of nanonewtons) and the viscosity of the gels. These results provide insight into the forces exerted on tissues during ultrasound therapy and indicate a potential source of bio-effects.Article Citation - WoS: 7Citation - Scopus: 9Identification of Crack Noises in Household Refrigerators(Elsevier, 2015) Körük, Hasan; Arısoy, AhmetThe crack noises propagating from a refrigerator disturb residents in a household; however, the reasons behind the mechanisms of such noises have not been identified yet. In this study, the crack noises in modern household refrigerators are identified and their root causes are explored. The appropriate parameters for overall and Fourier analyses are first determined and the noise characteristics of typical household refrigerators under various conditions are presented. Then, a special test rig providing remote control of the subcomponents including the compressor, fan and heater is designed and structural acceleration and sound pressure measurements inside and outside the test rig in a quiet room are performed. The acoustic and vibration measurements are conducted under various conditions by separately controlling each subcomponent. The crack noises in typical household refrigerators are identified and their root causes are explored by using the results of the overall and Fourier analyses. Some solutions to minimize the crack noises in household refrigerators are also summarized.Article Citation - WoS: 7Citation - Scopus: 9Identification of the Viscoelastic Properties of Soft Materials Using a Convenient Dynamic Indentation System and Procedure(Elsevier, 2022) Körük, Hasan,; Beşli, Ayça,; Koç, Ömer Hayati,; Yurdaer, Berk Salih,The responses of soft structures such as tissue depend on their viscoelastic properties. Therefore, the knowledge of the elastic and damping properties of soft materials is of great interest. This paper presents the identification of the viscoelastic properties of soft materials using a convenient dynamic indentation system and procedure. Using an electromagnet, a force is applied to a rigid sphere located at the soft-material interface and the dynamic response of the sphere is recorded using a high-speed camera. The recorded video is processed to identify the displacement of the sphere as a function of time. The dynamic response of the sphere located at the soft-material interface is predicted using an analytical model that considers the shear modulus and density of the soft sample, the radiation damping due to shear waves, and the radius and density of the sphere. By matching the measured and predicted steady-state displacements of the sphere, the shear modulus of the soft sample is determined. The viscous damping ratio of the soft sample is identified by using an equivalent viscous damping ratio for the soft sample in the analytical model and matching the measured and predicted oscillation amplitudes of the sphere. Experiments and analyzes are performed using gelation phantoms with different mechanical properties, spheres of different materials and sizes, and different force levels to verify the system and procedure. Three experiments are performed for each gelation phantom, sphere, and external force, and the repeatability of the results is presented. The results show that the dynamic indentation system and procedure presented in this study can be conveniently used to determine the viscoelastic properties of soft materials in practical applications.Article Citation - WoS: 67Citation - Scopus: 90Investigation of the Acoustic Properties of Bio Luffa Fiber and Composite Materials(Elsevier, 2015) Genç, Garip; Körük, HasanConsidering the adverse effects of petroleum-based materials on nature, finding and developing new materials as alternatives to these chemical materials become a necessity in practice. On the other hand, these new materials need characterization to be considered and effectively used in practical applications. The acoustic properties of luffa bio fiber and composite materials are investigated in this study. First, the preparation of various luffa test samples and the method for acoustic characterization of the luffa samples is presented. Then, the acoustic absorption properties of both luffa fiber and composite materials are identified using the impedance tube method. After that, the transmission loss levels of the same luffa samples are determined. All the results are evaluated and the acoustic performances of luffa materials are highlighted.Book Part Citation - Scopus: 4Jute and Luffa Fibers: Physical, Acoustical, and Mechanical Properties(Elsevier, 2022) Yüce, Hüseyin; Genç, Garip; Körük, HasanIn this study, the physical, acoustical, and mechanical properties of jute and luffa fibers are presented. It should be noted that, although the main materials of jute and luffa fibers are cellulose, hemicellulose, and lignin, the mechanical properties of jute and luffa fibers and the acoustical properties of jute and fiber samples can be quite different. It is worth noting that jute fibers are bidirectional while luffa fibers are random-oriented. Furthermore, the diameters and lengths of these two fibers can be quite different. One problem with these natural fibers is that very different values for their diameter, length, and density have been reported in the literature. Therefore, the diameter, length, and density of a huge number of jute and luffa fibers were measured using precise equipment to determine their average values and deviations in this study. In addition to the results of these measurements, the results of a comprehensive literature review on the physical, acoustical, and mechanical properties of jute and fibers and their green samples (i.e., fiber samples without any resin) were presented in this study. © 2023 Elsevier Ltd. All rights reserved.Article Citation - WoS: 11Citation - Scopus: 12Mechanics of Milling 48-2 Gamma Titanium Aluminide(Elsevier, 2020) Layegen, S. Ehsan; Lazoğlu, İsmail; Hussain, Abbas; Arrazola, Pedro-J.; Subaşı, Ömer; Yavaş, Çağlar; Lazcano, Xabier; Öztürk, Çağlar; Yiğit, İ. Enes; Aristimuno, Patxi-X.Accurate and fast prediction of cutting forces is important in high-performance cutting in the aerospace industry. Gamma titanium aluminide (gamma-TiAl) is a material of choice for aerospace and automotive applications due to its superior thermo-mechanical properties. Nevertheless, it is a difficult to machine material. This article presents the prediction of cutting forces for Ti-48Al-2Cr-2Nb (48-2-2) gamma-TiAl in milling process using orthogonal to oblique transformation technique. The novelty of this paper lies in reporting the orthogonal database of 48-2-2 gamma-TiAl. Fundamental cutting parameters such as shear stress, friction angle and shear angle are calculated based on experimental measurements. Friction coefficients are identified for two different coating conditions which are AlTiN, and AlCrN on carbide tools. Predicted results are validated with the experimental cutting forces during end milling and ball-end milling operations for different cutting conditions. The simulated results showed good agreement with the experimental results, which confirms the validity of the force modelArticle Citation - WoS: 3Citation - Scopus: 3Powder metallurgy processing of seven/eight component multi-phase (HfTiZr-Mn/Mo/W/Cr/Ta)B2 high entropy diboride ceramics(Elsevier, 2024) Suzer, Ilayda; Akbari, Amir; Ates, Semih; Bayrak, Kuebra Gurcan; Mertdinc-Ulkuseven, Siddika; Arisoy, C. Fahir; Agaogullari, Duygu; Öveçoğlu, M. LutfiThis study aims to show the possibility of synthesizing seven- and eight-component high entropy diboride (HEB) ceramics using high energy ball milling-assisted spark plasma sintering (SPS). Metal boride powders, synthesized in laboratory conditions from metal oxide-boron oxide-magnesium powder blends, were combined equimolarly as seven and eight components containing systems. Afterwards, hybridized powders were mechanically alloyed (MA) for 6 h and subjected to spark plasma sintering (SPS) at 2000 degrees C and under 30 MPa. Detailed phase analysis and physical, microstructural, and mechanical characterization of the samples were performed. in the sintered products, the main phase belongs to the HEB, and also low amounts of Hf/Zr oxides and secondary phases (W or Ti-rich) occurred. The highest hardness was observed at the (HfTiZrMoWCrTa)B-2 with 25 GPa, and the lowest hardness was seen at the (HfTiZrMnCrMoWTa)B2 with 17 GPa. Also, the highest wear resistance was calculated for the (HfTiZrMnCrMoTa)B-2 as 6.05 x 10(-7) mm(3)/Nm. Additionally, (HfTiZrMnMoWTa)B-2 and (HfTiZrMnMoCrTa)B-2 have the highest and lowest Archimedes' densities, with 7.94 g/cm(3) and 6.91 g/cm(3), respectively.Book Part Citation - Scopus: 1Prediction of the Sound Absorption Performance of Porous Samples Including Cellulose Fiber-Based Structures(Elsevier, 2022) Körük, HasanThe mathematical models for predicting the sound absorption coefficients (SACs) of porous samples are first presented, then they are used to predict the SACs of some porous structures, and their performances are evaluated. First of all, the parameters needed for the calculation of the SACs of a porous sample are briefly introduced. After that, the mathematical models for the prediction of acoustic properties are presented. These models include (i) simple empirical models such as Delany-Bazley and its modified versions, (ii) rigid-frame models such as Johnson-Champoux-Allard and Johnson-Champoux-Allard-Lafarge, and (iii) deformable-frame models such as Biot-Allard. After that, the estimation of the parameters needed in the mathematical models is presented. Then, the aforementioned models are used to predict the SACs of some porous samples including cellulose fiber-based structures, and their performances are evaluated in detail. © 2023 Elsevier Ltd. All rights reserved.
