Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Scopus Q "Q2"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Editorial 17th International Conference on Mechatronics Technology, October 15-18, 2013, Jeju Island, Korea(Elsevier, 2015) Hwang, Sung Ho; Kim, Joon-wan; Dorantes-Gonzalez, Dante JorgeIn recent years, Mechatronics has gained a lot of interest as more applications have been introduced to industry and society. The need for new mechatronic technologies in the form of advanced production systems, mechatronic devices, control systems, robotics, biomedical applications, MEMS, and measurement systems, among others, is very much required in improving productivity and competitiveness in many industries. Thus, this conference was organized to address the state-of-the-art technology for the benefit of researchers and users, and this time the conference made a special focus on the topic: Sustainable Mechatronics Technology.Article Citation - Scopus: 4Investigation of the Motion of a Spherical Object Located at Soft Elastic and Viscoelastic Material Interface for Identification of Material Properties(Academic Enhancement Department, King Mongkut's University of Technology North Bangkok, 2024) Körük, Hasan; Pouliopoulos, A.N.Measuring the properties of soft viscoelastic materials is challenging. Here, the motion of a spherical object located at the soft elastic and viscoelastic material interface for the identification of material properties is thoroughly investigated. Formulations for different loading cases were derived. First, the theoretical models for a spherical object located at an elastic medium interface were derived, ignoring the medium viscosity. After summarizing the model for the force reducing to zero following the initial loading, we developed mathematical models for the force reducing to a lower non-zero value or increasing to a higher non-zero value, following the initial loading. Second, a similar derivation process was followed to evaluate the response of a spherical object located at a viscoelastic medium interface. Third, by performing systematic analyses, the theoretical models obtained via different approaches were compared and evaluated. Fourth, the measured and predicted responses of a spherical object located at a gelatin phantom interface were compared and the viscoelastic material properties were identified. It was seen that the frequency of oscillations of a spherical object located at the sample interface during loading was 10–15% different from that during unloading in the experimental studies here. The results showed that different loading cases have immense practical value and the formulations for different loading cases can provide an accurate determination of material properties in a multitude of biomedical and industrial applications. © 2023 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.Article Citation - Scopus: 2Strong Transient Effects of the Flow Around a Harmonically Plunging Naca0012 Airfoil at Low Reynolds Numbers(Springer, 2015) Yücel, S. Banu; Şahin, Mehmet; Ünal, M. FevziAbstract The flow pattern around a NACA0012 airfoil undergoing harmonic plunging motion corresponding to the deflected wake phenomenon reported by Jones and Platzer (Exp Fluids 46:799–810, 2009) is investigated in detail using direct numerical simulations. An arbitrary Lagrangian–Eulerian formulation based on an unstructured side-centered finite volume method is utilized in order to solve the incompressible unsteady Navier–Stokes equations. The Reynolds number is chosen to be 252, and the reduced frequency of plunging motion (k = 2?fc/U?) and the plunge amplitude non-dimensionalized with respect to chord are set to be 12.3 and 0.12, respectively, as in the experimental study of Jones and Platzer (2009). The present numerical simulations reveal a highly persistent transient effect, and it takes two orders of magnitude larger duration than the heave period to reach the time-periodic state. In addition, the three-dimensional simulation reveals that the flow field is three-dimensional for the parameters used herein. The calculation reproduces the deflected wake and shows a good agreement with the experimental wake pattern. The instantaneous vorticity contours, finite-time Lyapunov exponent fields and particle traces are presented along with the aerodynamic parameters including the lift and thrust coefficients.Article Citation - Scopus: 9Investigation of the Sound Absorption and Transmission Loss Performances of Green Homogenous and Hybrid Luffa and Jute Fiber Samples(King Mongkut’s University of Technology North Bangkok, 2021) Genç, Garip; Şanlıtürk, Kenan Y.; Körük, Hasan; Özcan, Ahmet CihanIn order to promote the use of natural fibers in noise and vibration applications, the properties of these structures should be fully identified. The sound absorption coefficients (SACs) and transmission losses (TLs) of green luffa fiber samples are thoroughly investigated and their acoustic performances are compared with the acoustic performances of green homogenous jute and hybrid jute/luffa fiber samples in this study. For this purpose, green homogenous luffa and jute fiber samples and their green hybrid fiber samples with different thicknesses (10, 20, 30, and 40 mm) are produced and their SACs and TLs are determined using the impedance tube method. First, the methods for the experimental identification of acoustic properties are presented and the variations in the measured acoustic properties are identified. After that, the effects of sample thickness on the acoustic performances of homogenous luffa as well as jute samples and their hybrid fiber samples as a function of frequency are explored. The thickness-dependent tendencies of the SACs and TLs of homogenous and hybrid luffa and jute fiber samples for low, medium and high frequency ranges are determined. Then, the acoustic performances of the homogenous and hybrid luffa and jute samples are compared and evaluated. The results and analyses for the acoustic properties of homogeneous luffa and jute fiber samples and their hybrid fiber samples for a variety of thicknesses and different frequencies presented here can be used to design homogenous as well as hybrid luffa and jute fiber structures in practical applications.Article Citation - WoS: 68Citation - Scopus: 90Investigation of the Acoustic Properties of Bio Luffa Fiber and Composite Materials(Elsevier, 2015) Genç, Garip; Körük, HasanConsidering the adverse effects of petroleum-based materials on nature, finding and developing new materials as alternatives to these chemical materials become a necessity in practice. On the other hand, these new materials need characterization to be considered and effectively used in practical applications. The acoustic properties of luffa bio fiber and composite materials are investigated in this study. First, the preparation of various luffa test samples and the method for acoustic characterization of the luffa samples is presented. Then, the acoustic absorption properties of both luffa fiber and composite materials are identified using the impedance tube method. After that, the transmission loss levels of the same luffa samples are determined. All the results are evaluated and the acoustic performances of luffa materials are highlighted.Article Citation - WoS: 13Citation - Scopus: 17Acoustic Streaming in a Soft Tissue Microenvironment(Elsevier, 2019) El Ghamrawy, Ahmed; Mohammed, Ali; Jones, Julian R; Körük, Hasan; Choi, James J; de Comtes, FlorentinaWe demonstrated that sound can push fluid through a tissue-mimicking material. Although acousticstreaming in tissue has been proposed as a mechanism for biomedical ultrasound applications, such as neuromodu-lation and enhanced drug penetration, streaming in tissue or acoustic phantoms has not been directly observed. Wedeveloped a material that mimics the porous structure of tissue and used a dye and a video camera to track fluidmovement. When applied above an acoustic intensity threshold, a continuous focused ultrasound beam (spatialpeak time average intensity: 238 W/cm2, centre frequency: 5 MHz) was found to push the dye axially, that is, in thedirection of wave propagation and in the radial direction. Dye clearance increased with ultrasound intensity andwas modelled using an adapted version of Eckart’s acoustic streaming velocity equation. No microstructuralchanges were observed in the sonicated region when assessed using scanning electron microscopy. Our study indi-cates that acoustic streaming can occur in soft porous materials and provides a mechanistic basis for future use ofstreaming for therapeutic or diagnostic purposes.Article Citation - WoS: 8Citation - Scopus: 9On the Gas Pressure Inside Cavitation Bubbles(Aip Publishing, 2023) Pasinlioğlu, Şenay; Delale, Can F. F.The validity of the reduced order [Delale and Pasinlioglu, Acoustic cavitation model based on a novel reduced order gas pressure law, AIP Adv. 11, 115309 (2021)] and of classical polytropic gas pressure laws during the response of a bubble to variations in the pressure of the surrounding liquid is investigated. In particular, from the exact expression of the gas pressure coupled to the thermal behavior of gas bubbles, we identify the conditions where the reduced order gas pressure law and the classical polytropic law hold. We then distinguish three regimes for the change of state of the bubble during its nonlinear oscillations as the nearly isothermal, transition, and nearly adiabatic regimes, depending on the value of the polytropic index, and we determine the mean value of the polytropic index in each regime by averaging over a parameter, which is a function of the Peclet number based on the characteristic thermal diffusion time. The results of the temporal evolution of the bubble radius, the bubble wall temperature, and the partial gas pressure inside the bubble are presented using an acoustic cavitation model based on the reduced order gas pressure law for both constant and variable interface properties.Article Citation - WoS: 12Citation - Scopus: 14Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force(Elsevier, 2020) Körük, Hasan; Bezer, James H.; J Rowlands, Christopher; Choi, James J.Mechanical effects of microbubbles on tissues are central to many emerging ultrasound applications. Here, we investigated the acoustic radiation force a microbubble exerts on tissue at clinically relevant therapeutic ultrasound parameters. Individual microbubbles administered into a wall-less hydrogel channel (diameter: 25–100 µm, Young's modulus: 2–8.7 kPa) were exposed to an acoustic pulse (centre frequency: 1 MHz, pulse length: 10 ms, peak-rarefactional pressures: 0.6–1.0 MPa). Using high-speed microscopy, each microbubble was tracked as it pushed against the hydrogel wall. We found that a single microbubble can transiently deform a soft tissue-mimicking material by several micrometres, producing tissue loading–unloading curves that were similar to those produced using other indentation-based methods. Indentation depths were linked to gel stiffness. Using a mathematical model fitted to the deformation curves, we estimated the radiation force on each bubble (typically tens of nanonewtons) and the viscosity of the gels. These results provide insight into the forces exerted on tissues during ultrasound therapy and indicate a potential source of bio-effects.Article Citation - WoS: 6Citation - Scopus: 6Propulsive Performance of Plunging Airfoils in Biplane Configuration(American Institute of Physics Inc., 2022) Yücel, S. Banu; Şahin, Mehmet; Ünal, Mehmet FevziBiplane configuration of pure plunging airfoils is investigated in terms of vortex dynamics both experimentally and numerically by utilizing particle image velocimetry and unstructured finite volume solver of incompressible unsteady Navier-Stokes equations. Experiments are carried out to disclose the vortex shedding and interaction mechanisms for various values of frequency and amplitude of the plunging motion. For the non-dimensional plunge amplitude with respect to the chord of airfoil h = 0.2, the effect of the reduced circular frequency based on chord length and the free stream velocity k = 1 and 10 are considered, whereas for h = 0.3, k = 2, 4, 8, and 10 cases are examined. Influence of the plunge amplitude is studied for h = 0.25 at k = 2.5 and for h = 0.0875, 0.15, and 0.3 at k = 4. Numerical simulations are performed to investigate the effect of phase difference on vortex structures and propulsive characteristics, such as thrust and Froude efficiency. Two cases having the highest thrust and efficiency values k = 2.5, h = 0.25, and k = 4, h = 0.15 value couples are selected for the phase angle of φ = 0 °, φ = 90 °, φ = 180 °, and φ = 270 °. Opposed plunge, φ = 180 °, was found as the most efficient amongst all phase angles that were investigated, where φ = 90 ° is beneficial in lift production. Additionally, three-dimensional simulations indicate no significant three dimensionalities for the parameters used herein.Article Citation - WoS: 8Citation - Scopus: 10Identification of the Viscoelastic Properties of Soft Materials Using a Convenient Dynamic Indentation System and Procedure(Elsevier, 2022) Körük, Hasan,; Beşli, Ayça,; Koç, Ömer Hayati,; Yurdaer, Berk Salih,The responses of soft structures such as tissue depend on their viscoelastic properties. Therefore, the knowledge of the elastic and damping properties of soft materials is of great interest. This paper presents the identification of the viscoelastic properties of soft materials using a convenient dynamic indentation system and procedure. Using an electromagnet, a force is applied to a rigid sphere located at the soft-material interface and the dynamic response of the sphere is recorded using a high-speed camera. The recorded video is processed to identify the displacement of the sphere as a function of time. The dynamic response of the sphere located at the soft-material interface is predicted using an analytical model that considers the shear modulus and density of the soft sample, the radiation damping due to shear waves, and the radius and density of the sphere. By matching the measured and predicted steady-state displacements of the sphere, the shear modulus of the soft sample is determined. The viscous damping ratio of the soft sample is identified by using an equivalent viscous damping ratio for the soft sample in the analytical model and matching the measured and predicted oscillation amplitudes of the sphere. Experiments and analyzes are performed using gelation phantoms with different mechanical properties, spheres of different materials and sizes, and different force levels to verify the system and procedure. Three experiments are performed for each gelation phantom, sphere, and external force, and the repeatability of the results is presented. The results show that the dynamic indentation system and procedure presented in this study can be conveniently used to determine the viscoelastic properties of soft materials in practical applications.Article Citation - WoS: 1Mechanochemical Synthesis and Characterization of Nanostructured Erb4 and Ndb4 Rare-Earth Tetraborides(John Wiley and Sons Inc, 2024) Boztemur, B.; Kaya, F.; Derin, B.; Öveçoğlu, M.L.; Li, J.; Ağaoğulları, D.Rare-earth borides have become very popular in recent decades with high mechanical strength, melting point, good corrosion, wear, and magnetic behavior. However, the production of these borides is very challenging and unique. The production of ErB4 and NdB4 nanopowders via mechanochemical synthesis (MCS) is reported in this study first time in the literature. Er2O3 or Nd2O3, B2O3, and Mg initial powders are mechanically alloyed for different milling times to optimize the process. Rare-earth borides with MgO phases are synthesized, then MgO is removed with HCl acid. The nanostructured rare-earth tetraboride powders are analyzed using X-ray diffraction (XRD). Based on the XRD, ErB4 powders are produced successfully at the end of the 5 h milling. However, the NdB4 phase does not occur as the stoichiometric ratio, so the B2O3 amount is decreased to nearly 35 wt%. When the amount of B2O3 is decreased to 20 wt%, NdB4 and NdB6 phases are 50:50 according to the Rietveld analysis. However, a homogenous NdB4 phase is obtained with 30 wt% loss of B2O3. The average particle sizes of ErB4 and NdB4 powders are nearly 100.4 and 85.6 nm, respectively. The rare-earth tetraborides exhibit antiferromagnetic-to-paramagnetic-like phase transitions at 18 and 8.53 K, respectively. © 2024 The Author(s). Advanced Engineering Materials published by Wiley-VCH GmbH.Article Citation - WoS: 5Citation - Scopus: 6A New Approach for Measuring Viscoelastic Properties of Soft Materials Using the Dynamic Response of a Spherical Object Placed at the Sample Interface(Springer, 2023) Besli, Ayça; Koç,Ömer Hayati; Körük,Hasan; Yurdaer, Berk SalihBackground: There are several techniques to characterize the mechanical properties of soft materials, such as the indentation method and the method based on the application of a spherical object placed inside the sample. The indentation systems usually yield the elastic properties of materials and their mathematical models do not consider the inertia of the sample involved in motion and radiation damping, while placing an object inside the sample is not practical and this procedure can alter the mechanical properties of the sample for the method based on the application of a bubble/sphere placed inside the sample. Objective: A new approach for the identification of the viscoelastic properties of soft materials using the dynamic response of a spherical object placed at the sample interface was proposed. Methods: The spherical object placed at the sample interface was pressed using an electromagnet and the dynamic response of the spherical object was tracked using a high-speed camera, while the dynamic response of the spherical object placed at the sample interface was estimated using a comprehensive analytical model. The effects of the shear modulus, viscosity, Poisson’s ratio and density of the soft sample, the radius and density of the spherical object and the damping due to radiation were considered in this mathematical model. The shear modulus and viscosity of the soft sample were determined by matching the experimentally identified and theoretically estimated responses of the spherical object. Results: The shear moduli and viscosities of the three phantoms with the gelatin mass ratios of 0.20, 0.25 and 0.29 were measured to be 3450, 4300 and 4950 Pa and 12.5, 14.0 and 15.0 Pa⋅s, respectively. The shear modulus and viscosity of the phantom increases as the gelatin mass ratio increases. The frequency of oscillations of the hemisphere placed at the phantom interface increases as the gelatin mass ratio increases due to stiffness increase. Conclusions: After matching the experimental and theoretical steady-state displacements and amplitudes of oscillations of the hemisphere at the sample interface, the comparison of the experimentally identified and theoretically predicted frequency of oscillations further confirmed the identified material properties of the samples. The approach presented here is expected to provide valuable information on material properties in biomedical and industrial applications.Article Citation - WoS: 15Citation - Scopus: 13Calibration of the Effective Spring Constant of Ultra-Short Cantilevers for a High-Speed Atomic Force Microscope(2015) Xu, Lin-Yan; Wu, Sen; Hu, Xiao-Dong; Song, Yun-Peng; Fu, Xing; Zhang, Jun-Ming; Dorantes-Gonzalez, Dante JorgeUltra-short cantilevers are a new type of cantilever designed for the next generation of high-speed atomic force microscope (HS-AFM). Ultra-short cantilevers have smaller dimensions and higher resonant frequency than conventional AFM cantilevers. Moreover, their geometry may also be different from the conventional beam-shape or V-shape. These changes increase the difficulty of determining the spring constant for ultra-short cantilevers, and hence limit the accuracy and precision of force measurement based on a HS-AFM. This paper presents an experimental method to calibrate the effective spring constant of ultra-short cantilevers. By using a home-made AFM head, the cantilever is bent against an electromagnetic compensation balance under servo control. Meanwhile the bending force and the cantilever deflection are synchronously measured by the balance and the optical lever in the AFM head, respectively. Then the effective spring constant is simply determined as the ratio of the force to the corresponding deflection. Four ultra-short trapezoid shape cantilevers were calibrated using this method. A quantitative uncertainty analysis showed that the combined relative standard uncertainty of the calibration result is less than 2%, which is better than the uncertainty of any previously reported techniques.Article Citation - WoS: 2Citation - Scopus: 2Approximate Closed-Form Solutions for Vibration of Nano-Beams of Local/Non-local Mixture(Springer, 2022) Ruta, Giuseppe; Eroğlu, UğurcanThis paper presents an approach to natural vibration of nano-beams by a linear elastic constitutive law based on a mixture of local and non-local contributions, the latter based on Eringen's model. A perturbation in terms of an evolution parameter lets incremental field equations be derived; another perturbation in terms of the non-local volume fraction yields the variation of the natural angular frequencies and modes with the 'small' amount of non-locality. The latter perturbation does not need to comply with the so-called constitutive boundary conditions, the physical interpretation of which is still debated. The possibility to find closed-form solutions is highlighted following a thorough discussion on the compatibility conditions needed to solve the steps of the perturbation hierarchy; some paradigmatic examples are presented and duly commented.

