Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Scopus Q "Q3"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Article Citation - WoS: 5Citation - Scopus: 7Development of an Improved Mathematical Model for the Dynamic Response of a Sphere Located at a Viscoelastic Medium Interface(IOP, 2021) Körük, HasanA comprehensive investigation on the static and dynamic responses of a sphere located at elastic and viscoelastic medium interfaces is performed in this study. First, the mathematical models commonly used for predicting the static displacement of a sphere located at an elastic medium interface are presented and their performances are compared. After that, based on the finite element analyses, an accurate mathematical model to predict the static displacement of a sphere located at an elastic medium interface valid for different Poisson's ratios of the medium and small and large sphere displacements is proposed. Then, an improved mathematical model for the dynamic response of a sphere located at a viscoelastic medium interface is developed. In addition to the Young's modulus of the medium and the radius of the sphere, the model takes into account the density, Poisson's ratio and viscosity of the medium, the mass of the sphere and the radiation damping. The effects of the radiation damping, the Young's modulus, density and viscosity of the medium and the density of the sphere on the dynamic response of the sphere located at a viscoelastic medium interface are explored. The developed model can be used to understand the dynamic responses of spherical objects located at viscoelastic medium interfaces in practical applications. Furthermore, the proposed model is a significant tool for graduate students and researchers in the fields of engineering, materials science and physics to gain insight into the dynamic responses of spheres located at viscoelastic medium interfaces.Article Citation - WoS: 11Citation - Scopus: 14Modelling Small and Large Displacements of a Sphere on an Elastic Half-Space Exposed To a Dynamic Force(IOP Publishing, 2021) Hasan KörükSpheres at medium interfaces are encountered in many applications, including in atomic force microscopy or indentation tests. Although the Hertz theory describes the contact mechanics between an elastic sphere and an elastic half-space for static loading and small deformations very well, there is a need to consider the density of the medium, the mass of the sphere and the radiation damping for dynamic loading to obtain reliable results. In this study, an analytical model for predicting the small and large displacements of a sphere on an elastic half-space exposed to a dynamic force is developed. For this purpose, after summarizing a mathematical model that has recently been proposed for the sphere at a medium interface, a finite element model for the sphere at an elastic interface is developed. Based on the comparison of the mathematical and finite element models, an improved analytical model for the sphere at an elastic interface is developed. In addition to considering the elastic properties of the medium and the size of the sphere, the model developed here takes into account the density of the medium, the mass of the sphere, and the radiation damping, and the model is valid for small and large sphere displacements. The developed model can be used to understand the dynamic responses of spherical objects at medium interfaces in practical applications. Furthermore, the proposed model is a remarkable tool for undergraduate and graduate students and researchers in the fields of engineering, materials science and physics to gain insight into the dynamic responses of spheres at medium interfaces. © 2021 European Physical Society.Article Citation - WoS: 17Citation - Scopus: 24Identification of the Dynamic Characteristics of Luffa Fiber Reinforced Bio-Composite Plates(NC State University, 2017) Genç, Garip; Körük, HasanLuffa cylindrica plant fiber is a new biodegradable engineering material. However, the dynamic behaviors of these new green materials or their composites should be explored to consider them for practical applications. The dynamic characteristics including modal behavior and the elastic and sound isolation properties of luffa-based bio-composite plates were explored in this study. Structural frequency response function measurements were conducted using a few luffa bio-composite plates to identify their modal behavior. The modal frequencies and loss factors of the luffa bio-composite plates were identified by analyzing the frequency response function measurements using a few modal analysis methods such as half-power, circle-fit, and line-fit. The same luffa bio-composite structures were modelled using a finite element formulation with damping capability, and the elastic moduli of the composite plates were identified. In addition, the transmission loss levels of the same luffa composite samples were measured using the impedance tube method. The results showed that luffa composite structures have considerably high stiffness (elasticity modulus: 2.5 GPa), damping levels (loss factor: 2.6%), and transmission loss level (25 to 30 dB for a 1 cm thickness), and their mechanical properties are promising as an alternative disposable material for noise and vibration control engineering applications.Article Citation - WoS: 11Citation - Scopus: 17Quantification and Minimization of Sensor Effects on Modal Parameters of Lightweight Structures(JVE INTERNATIONAL LTD., 2014) Körük, HasanThis paper aims to quantify the adverse effects of contact type sensors on modal parameters of lightweight structures and to present a practical way for identification of modal parameters of structures with minimal sensor effects. The adverse effects of a contact type sensor on natural frequencies, damping levels and mode shapes are explored using the theoretical model of a typical beam-like sample carrying a sensor and a controlled experimental study based on measurement of frequency response functions using non-contact excitation and response sensors. The half-power and circle fit modal identification methods are used to extract modal parameter from measured data. The experimental and theoretical modal analysis results are evaluated, and a practical methodology based on classical acoustic and vibration frequency response functions is suggested to identify modal loss factors and natural frequencies of lightweight structures with minimal sensor effects.Article Citation - WoS: 1Citation - Scopus: 21441. Quantification of the Flow Noise in Household Refrigerators(JVE INTERNATIONAL LTD., 2014) Körük, Hasan; Arısoy, Ahmet; Bilgin, NecatiThe flow noise in household refrigerators is quantified in this study. First, the sound pressure measurements in a quiet room using typical household refrigerators are conducted and the noise characteristics of the refrigerators are presented. Then, the flow noise in household refrigerators is quantified using the results of the overall analysis and Fourier transform of the measured sound pressure data. After that, the flow noise in household refrigerators is quantified using the sound pressure measurements conducted using a specially designed test rig. The frequency characteristics of the flow noise in household refrigerators are also explored and the contribution of the flow noise is identified.Article Citation - WoS: 1Citation - Scopus: 1Acoustic Cavitation Model Based on a Novel Reduced Order Gas Pressure Law(2021) Pasinlioğlu, Şenay; Delale, Can FuadThe thermal behavior of a spherical gas bubble in a liquid excited by an acoustic pressure signal is investigated by constructing an iterative solution of the energy balance equations between the gas bubble and the surrounding liquid in the uniform pressure approximation. This iterative solution leads to hierarchy equations for the radial partial derivatives of the temperature at the bubble wall, which control the temporal rate of change of the gas pressure and gas temperature within the bubble. In particular, a closure relation for the hierarchy equations is introduced based on the ansatz that approximates the rapid change of state during the collapse of the bubble from almost isothermal to almost adiabatic behavior by time averaging the complex dynamics of change of state over a relatively short characteristic time. This, in turn, leads to the desired reduced order gas pressure law exhibiting power law dependence on the bubble wall temperature and on the bubble radius, with the polytropic index depending on the isentropic exponent of the gas and on a parameter that is a function of the Péclet number and a characteristic time scale. Results of the linear theory for gas bubbles are recovered by identifying this parameter as a function of the Péclet number based on the Minnaert frequency. The novel gas pressure law is then validated against the near-isothermal solution and against the results of the numerical simulations of the original energy balance equations for large amplitude oscillations using spectral methods. Consequently, an acoustic cavitation model that accounts for phase change but that neglects mass diffusion is constructed by employing the reduced order gas pressure law together with the Plesset–Zwick solution for the bubble wall temperature and the Keller–Miksis equation for spherical bubble dynamics. Results obtained using variable interface properties for acoustically driven cavitation bubbles in water show that the time variations of the bubble radius and the bubble wall temperature lie between those obtained by the isothermal and adiabatic laws depending on the value of the Péclet number and the characteristic time scale.Conference Object Citation - WoS: 3Citation - Scopus: 3First Iterative Solution of the Thermal Behaviour of Acoustic Cavitation Bubbles in the Uniform Pressure Approximation(2015) Delale, Can Fuat; Pasinlioglu, ŞenayThe thermal behaviour of a spherical gas bubble in a liquid driven by an acoustic pressure is investigated in the uniform pressure approximation by employing an iterative method to solve the energy balance equations between the gas bubble and the surrounding liquid for the temperature distribution and the gas pressure inside the bubble. It is shown that the first iterative solution leads to the first order law of the gas pressure as a polytropic power law of the bubble wall temperature and of the bubble radius, with the polytropic index given as an explicit function of the isentropic exponent of the gas. The resulting first order law of the gas pressure reduces to the classical isothermal and adiabatic laws in the appropriate limits. The first order gas pressure law is then applied to an acoustically driven cavitation bubble by solving the Rayleigh-Plesset equation. Results obtained show that the bubble wall temperature pulsations during collapse and rebound can become a few orders of magnitude higher than the bulk liquid temperature.
