Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Subject "Acoustic properties"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Book Part Citation - Scopus: 518 - Acoustic and Mechanical Properties of Biofibers and Their Composites(Elsevier, 2022) Koç, Büşra; Genç, Garip; Körük, HasanIn this study, the acoustic and mechanical properties of many biofibers and their composites are presented. First, the sound absorption coefficients and transmission losses of commonly used natural fibers and their composites are presented, by clearly reporting the thickness of the samples, for three different frequency ranges (<500 Hz: low, 500–2000 Hz: medium, and >2000 Hz: high). In addition, the sound absorption coefficients (for low- and medium-frequency ranges) and noise reduction coefficients of some 40-cm-thick samples are overlaid in order to directly compare their performances. Second, the physical properties, such as the density, diameter, and length of biofibers, and mechanical properties, such as the damping (or loss factor) and Young’s modulus of biofibers and their composites, are presented in detail. For comparison purposes, the acoustic and mechanical properties of some conventional materials, such as carbon and glass fibers, are included in the tables and figures. Finally, the effects of some parameters, such as pretreatment, fiber diameter, fiber/matrix ratio, moisture content, manufacturing and machining parameters/techniques, and measurement conditions/methods, on the acoustic and mechanical properties of natural materials are presented. Furthermore, current applications and potential usage areas of natural fibers are briefly discussed.Book Part Citation - Scopus: 3Effects of Machining on the Acoustic and Mechanical Properties of Jute and Luffa Biocomposites(Elsevier, 2023) Genç, Garip; Körük, HasanAfter their production, biocomposite structures do not always have the final shape or dimensions required for their purpose, hence, they need machining. However, the effects of machining on the acoustic and mechanical properties of many biocomposites are still not well known. The effects of machining on the acoustic and mechanical properties of jute and luffa biocomposites are revealed in this chapter. To do this, the sound absorption coefficients (or SACs) and transmission losses (or TLs) of jute and epoxy and luffa and epoxy composite samples, with and without a turning process, are determined using the impedance tube method. The loss factors and Young’s moduli of the jute and epoxy and luffa and epoxy composite samples, with and without a milling process, are identified using experimental and theoretical modal analyses. The results show that, when the samples are machined, the sound absorption coefficients reduce by 3%-7%, the transmission loss levels increase by 6-11dB, and the damping levels and Young’s moduli reduce by 0.1%-0.5% and 3%-4%, respectively. © 2023 Elsevier Ltd. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 4Identification of Uncertainty Levels of Acoustic Properties of Biocomposites Under Different Mounting Conditions in Impedance Tube Tests(Institute of Noise Control Engineering, 2021) Garip Genç; Şanlıtürk, Kenan Y.; Yusuf Saygılı; Hasan KörükImpedance tube method is widely used to measure acoustic properties of materials. Although this method yields reliable acoustic properties for soft textured materials, uncertainty levels of measured acoustic properties for hard materials, including biocomposites, can be quite large, mainly due to uncertain mounting conditions. Here, the effects of mounting conditions on the acoustic properties of biocomposites in an impedance tube are investigated. First, nominally identical biocomposite samples with a diameter equal to the inner diameter of impedance tube are manufactured and their acoustic properties are determined. As hard materials practically cause fitting problems in the impedance tube, the diameters of samples are reduced, as in practice, by small amounts and acoustic properties of modified samples are determined. Furthermore, in order to match the diameters of samples to the inner diameter of impedance tube, different materials such as tape, petroleum jelly and cotton are applied around samples to close the air gap between the samples and the tube's inner wall. All the results are compared, and the uncertainty levels caused by different mounting conditions on the acoustic properties of biocomposites are identified. The results show that the transmission loss (TL) measurements are dramatically affected by the mounting conditions while the sound absorption conditions are less sensitive to the mounting conditions. The deviations in the measured TL levels are highest for the samples with tape and wax (10–15 dB). On the other hand, the deviations in the measured sound absorption coefficients are highest for the samples with cotton and tape (1–2%).Book Part Citation - Scopus: 1Prediction of the Sound Absorption Performance of Porous Samples Including Cellulose Fiber-Based Structures(Elsevier, 2022) Körük, HasanThe mathematical models for predicting the sound absorption coefficients (SACs) of porous samples are first presented, then they are used to predict the SACs of some porous structures, and their performances are evaluated. First of all, the parameters needed for the calculation of the SACs of a porous sample are briefly introduced. After that, the mathematical models for the prediction of acoustic properties are presented. These models include (i) simple empirical models such as Delany-Bazley and its modified versions, (ii) rigid-frame models such as Johnson-Champoux-Allard and Johnson-Champoux-Allard-Lafarge, and (iii) deformable-frame models such as Biot-Allard. After that, the estimation of the parameters needed in the mathematical models is presented. Then, the aforementioned models are used to predict the SACs of some porous samples including cellulose fiber-based structures, and their performances are evaluated in detail. © 2023 Elsevier Ltd. All rights reserved.
