Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Subject "Biocomposites"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Book Part Citation - Scopus: 518 - Acoustic and Mechanical Properties of Biofibers and Their Composites(Elsevier, 2022) Koç, Büşra; Genç, Garip; Körük, HasanIn this study, the acoustic and mechanical properties of many biofibers and their composites are presented. First, the sound absorption coefficients and transmission losses of commonly used natural fibers and their composites are presented, by clearly reporting the thickness of the samples, for three different frequency ranges (<500 Hz: low, 500–2000 Hz: medium, and >2000 Hz: high). In addition, the sound absorption coefficients (for low- and medium-frequency ranges) and noise reduction coefficients of some 40-cm-thick samples are overlaid in order to directly compare their performances. Second, the physical properties, such as the density, diameter, and length of biofibers, and mechanical properties, such as the damping (or loss factor) and Young’s modulus of biofibers and their composites, are presented in detail. For comparison purposes, the acoustic and mechanical properties of some conventional materials, such as carbon and glass fibers, are included in the tables and figures. Finally, the effects of some parameters, such as pretreatment, fiber diameter, fiber/matrix ratio, moisture content, manufacturing and machining parameters/techniques, and measurement conditions/methods, on the acoustic and mechanical properties of natural materials are presented. Furthermore, current applications and potential usage areas of natural fibers are briefly discussed.Article Citation - WoS: 17Citation - Scopus: 24Jute and Luffa Fiber-Reinforced Biocomposites: Effects of Sample Thickness and Fiber/Resin Ratio on Sound Absorption and Transmission Loss Performance(Taylor & Francis, 2021) Şanlıtürk, Kenan Y.; Genç, Garip; Körük, Hasan; Özcan, Ahmet CihanThe acoustic properties of natural fiber-reinforced composites should be identified before using these materials in various engineering applications including sound and vibration isolation. This study investigates the effects of sample thickness and fiber/resin ratio on the acoustic performance of jute and luffa fiber-reinforced biocomposites. For this purpose, jute and luffa composite samples with different thicknesses and fiber/epoxy ratios are manufactured and their sound absorption coefficients (SACs) and transmission losses (TLs) are determined using impedance tube method. Thickness-dependent tendencies of the SACs and TLs of jute and luffa composites for low-, medium-, and high-frequency ranges are identified. The effect of fiber/epoxy ratio on the acoustic properties of jute and luffa composites as a function of frequency are determined. Furthermore, the SACs and TLs of some natural fiber-based samples with different thicknesses are predicted using mathematical models and the theoretical and experimental results are compared and evaluated.
