Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Subject "Biomaterials"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Book Part Citation - Scopus: 518 - Acoustic and Mechanical Properties of Biofibers and Their Composites(Elsevier, 2022) Koç, Büşra; Genç, Garip; Körük, HasanIn this study, the acoustic and mechanical properties of many biofibers and their composites are presented. First, the sound absorption coefficients and transmission losses of commonly used natural fibers and their composites are presented, by clearly reporting the thickness of the samples, for three different frequency ranges (<500 Hz: low, 500–2000 Hz: medium, and >2000 Hz: high). In addition, the sound absorption coefficients (for low- and medium-frequency ranges) and noise reduction coefficients of some 40-cm-thick samples are overlaid in order to directly compare their performances. Second, the physical properties, such as the density, diameter, and length of biofibers, and mechanical properties, such as the damping (or loss factor) and Young’s modulus of biofibers and their composites, are presented in detail. For comparison purposes, the acoustic and mechanical properties of some conventional materials, such as carbon and glass fibers, are included in the tables and figures. Finally, the effects of some parameters, such as pretreatment, fiber diameter, fiber/matrix ratio, moisture content, manufacturing and machining parameters/techniques, and measurement conditions/methods, on the acoustic and mechanical properties of natural materials are presented. Furthermore, current applications and potential usage areas of natural fibers are briefly discussed.Article Citation - WoS: 67Citation - Scopus: 90Investigation of the Acoustic Properties of Bio Luffa Fiber and Composite Materials(Elsevier, 2015) Genç, Garip; Körük, HasanConsidering the adverse effects of petroleum-based materials on nature, finding and developing new materials as alternatives to these chemical materials become a necessity in practice. On the other hand, these new materials need characterization to be considered and effectively used in practical applications. The acoustic properties of luffa bio fiber and composite materials are investigated in this study. First, the preparation of various luffa test samples and the method for acoustic characterization of the luffa samples is presented. Then, the acoustic absorption properties of both luffa fiber and composite materials are identified using the impedance tube method. After that, the transmission loss levels of the same luffa samples are determined. All the results are evaluated and the acoustic performances of luffa materials are highlighted.
