Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by WoS Q "Q2"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Editorial 17th International Conference on Mechatronics Technology, October 15-18, 2013, Jeju Island, Korea(Elsevier, 2015) Hwang, Sung Ho; Kim, Joon-wan; Dorantes-Gonzalez, Dante JorgeIn recent years, Mechatronics has gained a lot of interest as more applications have been introduced to industry and society. The need for new mechatronic technologies in the form of advanced production systems, mechatronic devices, control systems, robotics, biomedical applications, MEMS, and measurement systems, among others, is very much required in improving productivity and competitiveness in many industries. Thus, this conference was organized to address the state-of-the-art technology for the benefit of researchers and users, and this time the conference made a special focus on the topic: Sustainable Mechatronics Technology.Article Citation - WoS: 5Citation - Scopus: 6A New Approach for Measuring Viscoelastic Properties of Soft Materials Using the Dynamic Response of a Spherical Object Placed at the Sample Interface(Springer, 2023) Besli, Ayça; Koç,Ömer Hayati; Körük,Hasan; Yurdaer, Berk SalihBackground: There are several techniques to characterize the mechanical properties of soft materials, such as the indentation method and the method based on the application of a spherical object placed inside the sample. The indentation systems usually yield the elastic properties of materials and their mathematical models do not consider the inertia of the sample involved in motion and radiation damping, while placing an object inside the sample is not practical and this procedure can alter the mechanical properties of the sample for the method based on the application of a bubble/sphere placed inside the sample. Objective: A new approach for the identification of the viscoelastic properties of soft materials using the dynamic response of a spherical object placed at the sample interface was proposed. Methods: The spherical object placed at the sample interface was pressed using an electromagnet and the dynamic response of the spherical object was tracked using a high-speed camera, while the dynamic response of the spherical object placed at the sample interface was estimated using a comprehensive analytical model. The effects of the shear modulus, viscosity, Poisson’s ratio and density of the soft sample, the radius and density of the spherical object and the damping due to radiation were considered in this mathematical model. The shear modulus and viscosity of the soft sample were determined by matching the experimentally identified and theoretically estimated responses of the spherical object. Results: The shear moduli and viscosities of the three phantoms with the gelatin mass ratios of 0.20, 0.25 and 0.29 were measured to be 3450, 4300 and 4950 Pa and 12.5, 14.0 and 15.0 Pa⋅s, respectively. The shear modulus and viscosity of the phantom increases as the gelatin mass ratio increases. The frequency of oscillations of the hemisphere placed at the phantom interface increases as the gelatin mass ratio increases due to stiffness increase. Conclusions: After matching the experimental and theoretical steady-state displacements and amplitudes of oscillations of the hemisphere at the sample interface, the comparison of the experimentally identified and theoretically predicted frequency of oscillations further confirmed the identified material properties of the samples. The approach presented here is expected to provide valuable information on material properties in biomedical and industrial applications.Article Citation - WoS: 23Citation - Scopus: 25Acoustic Particle Palpation for Measuring Tissue Elasticity(American Institute of Physics, 2015) El Ghamrawy, Ahmed; Körük, Hasan; Choi, James J; Pouliopoulos, Antonios NWe propose acoustic particle palpation—the use of sound to press a population of acoustic particles against an interface—as a method for measuring the qualitative and quantitative mechanical properties of materials. We tested the feasibility of this method by emitting ultrasound pulses across a tunnel of an elastic material filled with microbubbles. Ultrasound stimulated the microbubble cloud to move in the direction of wave propagation, press against the distal surface, and cause deformations relevant for elasticity measurements. Shear waves propagated away from the palpation site with a velocity that was used to estimate the material’s Young’s modulus.Article Citation - WoS: 12Citation - Scopus: 15Acoustic Streaming in a Soft Tissue Microenvironment(Elsevier, 2019) El Ghamrawy, Ahmed; Mohammed, Ali; Jones, Julian R; Körük, Hasan; Choi, James J; de Comtes, FlorentinaWe demonstrated that sound can push fluid through a tissue-mimicking material. Although acousticstreaming in tissue has been proposed as a mechanism for biomedical ultrasound applications, such as neuromodu-lation and enhanced drug penetration, streaming in tissue or acoustic phantoms has not been directly observed. Wedeveloped a material that mimics the porous structure of tissue and used a dye and a video camera to track fluidmovement. When applied above an acoustic intensity threshold, a continuous focused ultrasound beam (spatialpeak time average intensity: 238 W/cm2, centre frequency: 5 MHz) was found to push the dye axially, that is, in thedirection of wave propagation and in the radial direction. Dye clearance increased with ultrasound intensity andwas modelled using an adapted version of Eckart’s acoustic streaming velocity equation. No microstructuralchanges were observed in the sonicated region when assessed using scanning electron microscopy. Our study indi-cates that acoustic streaming can occur in soft porous materials and provides a mechanistic basis for future use ofstreaming for therapeutic or diagnostic purposes.Article Citation - WoS: 10Citation - Scopus: 13Displacement of a Bubble by Acoustic Radiation Force Into a Fluid-Tissue Interface(2018) Körük, Hasan; Choi, James JMicrobubbles in an ultrasound beam experience a primary Bjerknes force, which pushes the microbubbles against a fluid-tissue interface and deforms the tissue. This interaction has been used to measure tissue elasticity and is a common interaction in many therapeutic and diagnostic applications, but the mechanisms of deformation, and how the deformation dynamic depends on the bubble and ultrasound parameters, remain unknown. In this study, a mathematical model is proposed for the displacement of a bubble onto a fluid-tissue interface and the tissue deformation in response to the primary Bjerknes force. First, a model was derived for static loading and the model's prediction of bubble-mediated tissue displacement and stresses in tissue were explored. Second, the model was updated for dynamic loading. The results showed that the bubble is both displaced by the applied force and changes its shape. The bubble displacement changes nonlinearly with the applied force. The stress values in tissue are quite high for a distance within one radius of the bubble from the bubble surface. The model proposed here is permissible in human tissue and can be used for biomedical ultrasound applications, including material characterization. (C) 2018 Acoustical Society of America.Article Citation - WoS: 12Citation - Scopus: 14Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force(Elsevier, 2020) Körük, Hasan; Bezer, James H.; J Rowlands, Christopher; Choi, James J.Mechanical effects of microbubbles on tissues are central to many emerging ultrasound applications. Here, we investigated the acoustic radiation force a microbubble exerts on tissue at clinically relevant therapeutic ultrasound parameters. Individual microbubbles administered into a wall-less hydrogel channel (diameter: 25–100 µm, Young's modulus: 2–8.7 kPa) were exposed to an acoustic pulse (centre frequency: 1 MHz, pulse length: 10 ms, peak-rarefactional pressures: 0.6–1.0 MPa). Using high-speed microscopy, each microbubble was tracked as it pushed against the hydrogel wall. We found that a single microbubble can transiently deform a soft tissue-mimicking material by several micrometres, producing tissue loading–unloading curves that were similar to those produced using other indentation-based methods. Indentation depths were linked to gel stiffness. Using a mathematical model fitted to the deformation curves, we estimated the radiation force on each bubble (typically tens of nanonewtons) and the viscosity of the gels. These results provide insight into the forces exerted on tissues during ultrasound therapy and indicate a potential source of bio-effects.Article Citation - WoS: 67Citation - Scopus: 90Investigation of the Acoustic Properties of Bio Luffa Fiber and Composite Materials(Elsevier, 2015) Genç, Garip; Körük, HasanConsidering the adverse effects of petroleum-based materials on nature, finding and developing new materials as alternatives to these chemical materials become a necessity in practice. On the other hand, these new materials need characterization to be considered and effectively used in practical applications. The acoustic properties of luffa bio fiber and composite materials are investigated in this study. First, the preparation of various luffa test samples and the method for acoustic characterization of the luffa samples is presented. Then, the acoustic absorption properties of both luffa fiber and composite materials are identified using the impedance tube method. After that, the transmission loss levels of the same luffa samples are determined. All the results are evaluated and the acoustic performances of luffa materials are highlighted.Article Citation - WoS: 11Citation - Scopus: 12Mechanics of Milling 48-2 Gamma Titanium Aluminide(Elsevier, 2020) Layegen, S. Ehsan; Lazoğlu, İsmail; Hussain, Abbas; Arrazola, Pedro-J.; Subaşı, Ömer; Yavaş, Çağlar; Lazcano, Xabier; Öztürk, Çağlar; Yiğit, İ. Enes; Aristimuno, Patxi-X.Accurate and fast prediction of cutting forces is important in high-performance cutting in the aerospace industry. Gamma titanium aluminide (gamma-TiAl) is a material of choice for aerospace and automotive applications due to its superior thermo-mechanical properties. Nevertheless, it is a difficult to machine material. This article presents the prediction of cutting forces for Ti-48Al-2Cr-2Nb (48-2-2) gamma-TiAl in milling process using orthogonal to oblique transformation technique. The novelty of this paper lies in reporting the orthogonal database of 48-2-2 gamma-TiAl. Fundamental cutting parameters such as shear stress, friction angle and shear angle are calculated based on experimental measurements. Friction coefficients are identified for two different coating conditions which are AlTiN, and AlCrN on carbide tools. Predicted results are validated with the experimental cutting forces during end milling and ball-end milling operations for different cutting conditions. The simulated results showed good agreement with the experimental results, which confirms the validity of the force modelArticle Citation - WoS: 1Mechanochemical Synthesis and Characterization of Nanostructured Erb4 and Ndb4 Rare-Earth Tetraborides(John Wiley and Sons Inc, 2024) Boztemur, B.; Kaya, F.; Derin, B.; Öveçoğlu, M.L.; Li, J.; Ağaoğulları, D.Rare-earth borides have become very popular in recent decades with high mechanical strength, melting point, good corrosion, wear, and magnetic behavior. However, the production of these borides is very challenging and unique. The production of ErB4 and NdB4 nanopowders via mechanochemical synthesis (MCS) is reported in this study first time in the literature. Er2O3 or Nd2O3, B2O3, and Mg initial powders are mechanically alloyed for different milling times to optimize the process. Rare-earth borides with MgO phases are synthesized, then MgO is removed with HCl acid. The nanostructured rare-earth tetraboride powders are analyzed using X-ray diffraction (XRD). Based on the XRD, ErB4 powders are produced successfully at the end of the 5 h milling. However, the NdB4 phase does not occur as the stoichiometric ratio, so the B2O3 amount is decreased to nearly 35 wt%. When the amount of B2O3 is decreased to 20 wt%, NdB4 and NdB6 phases are 50:50 according to the Rietveld analysis. However, a homogenous NdB4 phase is obtained with 30 wt% loss of B2O3. The average particle sizes of ErB4 and NdB4 powders are nearly 100.4 and 85.6 nm, respectively. The rare-earth tetraborides exhibit antiferromagnetic-to-paramagnetic-like phase transitions at 18 and 8.53 K, respectively. © 2024 The Author(s). Advanced Engineering Materials published by Wiley-VCH GmbH.Article Citation - Scopus: 2Strong Transient Effects of the Flow Around a Harmonically Plunging Naca0012 Airfoil at Low Reynolds Numbers(Springer, 2015) Yücel, S. Banu; Şahin, Mehmet; Ünal, M. FevziAbstract The flow pattern around a NACA0012 airfoil undergoing harmonic plunging motion corresponding to the deflected wake phenomenon reported by Jones and Platzer (Exp Fluids 46:799–810, 2009) is investigated in detail using direct numerical simulations. An arbitrary Lagrangian–Eulerian formulation based on an unstructured side-centered finite volume method is utilized in order to solve the incompressible unsteady Navier–Stokes equations. The Reynolds number is chosen to be 252, and the reduced frequency of plunging motion (k = 2?fc/U?) and the plunge amplitude non-dimensionalized with respect to chord are set to be 12.3 and 0.12, respectively, as in the experimental study of Jones and Platzer (2009). The present numerical simulations reveal a highly persistent transient effect, and it takes two orders of magnitude larger duration than the heave period to reach the time-periodic state. In addition, the three-dimensional simulation reveals that the flow field is three-dimensional for the parameters used herein. The calculation reproduces the deflected wake and shows a good agreement with the experimental wake pattern. The instantaneous vorticity contours, finite-time Lyapunov exponent fields and particle traces are presented along with the aerodynamic parameters including the lift and thrust coefficients.Article Citation - WoS: 6Citation - Scopus: 7The Effects of Ultrasound Parameters and Microbubble Concentration on Acoustic Particle Palpation(Acoustical Society of America, 2018) Körük, Hasan; Saharkhiz, Niloufar; Choi, James JThe elasticity of tissue—an indicator of disease progression—can be imaged by ultrasound elasticity imaging technologies. An acoustic particle palpation (APP) has recently been developed—the use of ultrasonically driven acoustic particles (e.g., microbubbles)—as an alternative method of tissue deformation. APP has the potential to improve the resolution, contrast, and depth of ultrasound elasticity imaging; but the tissue displacement dynamics and its dependence on acoustic pressure, center frequency, and microbubble concentration remains unknown. Here, displacements of at least 1 μm were produced by applying ultrasound onto a microbubble solution (concentration: 10 × 106 microbubbles ml–1) placed within a tunnel surrounded by a 5% gelatin phantom. Displacements of more than 10 μm were produced using a 1, 3.5, or 5 MHz center frequency pulse with peak-rarefactional pressures of 470, 785, and 1210 kPa, respectively. The deformation of the distal wall varied spatially and temporally according to the different parameters investigated. At low pressures, the deformation increased over several milliseconds until it was held at a nearly constant value. At high pressures, a large deformation occurred within a millisecond followed by a sharp decrease and long stabilization. Ultrasound exposure in the presence of microbubbles produced tissue deformation (p < 0.05) while without microbubbles, no deformation was observed.