Ağralı, Semra
Loading...
Profile URL
Name Variants
Agrali, Semra
Semra Ağralı
Semra Ağralı
Job Title
Email Address
agralis@mef.edu.tr
Main Affiliation
02.01. Department of Industrial Engineering
Status
Current Staff
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Sustainable Development Goals
7
AFFORDABLE AND CLEAN ENERGY

3
Research Products
9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

1
Research Products
13
CLIMATE ACTION

5
Research Products
17
PARTNERSHIPS FOR THE GOALS

2
Research Products

Documents
18
Citations
369
h-index
10

Documents
19
Citations
339

Scholarly Output
19
Articles
10
Views / Downloads
4111/14136
Supervised MSc Theses
8
Supervised PhD Theses
0
WoS Citation Count
158
Scopus Citation Count
173
WoS h-index
6
Scopus h-index
6
Patents
0
Projects
3
WoS Citations per Publication
8.32
Scopus Citations per Publication
9.11
Open Access Source
9
Supervised Theses
8
Google Analytics Visitor Traffic
| Journal | Count |
|---|---|
| Journal Of Renewable And Sustainable Energy | 2 |
| Ieee Transactions On Power Systems | 1 |
| IISE Transactions | 1 |
| INFORMS Journal on Computing | 1 |
| Journal Of Environmental Management | 1 |
Current Page: 1 / 2
Scopus Quartile Distribution
Competency Cloud

Scholarly Output Search Results
Now showing 1 - 10 of 19
Master Thesis Carbon Price Forecasting(MEF Üniversitesi, Fen Bilimleri Enstitüsü, 2018) Karakaya, Nurhak; Ağralı, SemraIn last twenty years great improvements occurred both in technological advances and in the world economic capacity. The total production capacity of countries has been increasing rapidly. These increases need great usage of energy. For that reason, prices of energy related products are very important as they dramatically affect company budgets. Energy budgets get a great deal in total budget of companies and countries. A unit increase in an energy related product can severely affect the budget. The carbon price is one of those products. Besides carbon prices, carbon usage also affects global environment so its price also has an impact on global temperature. To forecast future carbon price different machine learning methods are used. In literature, support vector machines (SVM) [1, 2, 3], random forest (RF) [4, 5], artificial neural networks (ANN) [6, 7, 8] and Auto Regressive Moving Average (ARMA) [9] are commonly used methods. All these methods have pros and cons over the others. In this project, we also apply different machine learning methods, ANN, SVM, RF, Lasso Regression (LG)[11] and Ridge Regression (RR) [10] to forecast the carbon price over time, and give an explanation for future price movements. Then, we compare those five models by analyzing model validation methods. Finally, we choose the best model for further experiments. We have four data types: daily carbon price (CP), electricity price (EP), natural gas price (NG) and coal price (COP) that cover the period of 2009 and 2017. Prices are provided in different currencies. First of all, we work on the data to have all prices in the same currency. We completely eliminate null data. Then, graphically we investigate overall trend by smoothing the data. For analyzing data, we look for daily, monthly, yearly and seasonally time scales. For every weekday or weekends in train data set we keep a day in test data set so that we can keep the time effect in our model. After the data management process, we apply different forecasting methods to explain future carbon price tendencies.Article Citation - WoS: 6Citation - Scopus: 6A Strong Integer Programming Formulation for Hybrid Flowshop Scheduling(Taylor & Francis, 2019) Ağralı, Semra; Ünal, A. Tamer; Taşkın, Z. CanerWe consider a hybrid flowshop scheduling problem that includes parallel unrelated discrete machines or batch processing machines in different stages of a production system. The problem is motivated by a bottleneck process within the production system of a transformer producer located in the Netherlands. We develop an integer programming model that minimises the total tardiness of jobs over a finite planning horizon. Our model is applicable to a wide range of production systems organised as hybrid flowshops. We strengthen our integer program by exploiting the special properties of some constraints in our formulation. We develop a decision support system (DSS) based on our proposed optimisation model. We compare the results of our initial optimisation model with an improved formulation as well as with a heuristic that was in use at the company before the implementation of our DSS. Our results show that the improved optimisation model significantly outperforms the heuristic and the initial optimisation model in terms of both the solution time and the strength of its linear programming relaxation.Master Thesis Game Recommendation System for Steam Platform(MEF Üniversitesi Fen Bilimleri Enstitüsü, 2021) Bayram, Serhan; Semra AğralıIncreasing number of choices and competition in the markets, force companies to differ in services they provide to their customers. Offering better services have a positive impact on customer loyalty, and to do so, companies should understand their customers’ interests and act accordingly. One popular method for this purpose is building recommendation engines to make personalized suggestions. In this project, collaborative filtering methods with implicit feedback are used to make recommendations to users of theSteam platform. The recommendation systems are built using two different matrix factorization techniques, Alternating Least Squares and Bayesian Personalized Ranking. Different models are created with implicit playtime data of the users and the results are evaluated by using Precision at k metric. Additionally, similar items that are offered by the models are analyzed. Results show that the models are considerably successful at finding personal choices and similar items. The best model finds the item in the libraries of 33% ofthe users.Article Citation - WoS: 1Citation - Scopus: 2Nonlinear Benefit-Cost Optimization-Based Selection of Insulation Material and Window Type: a Case Study in Turkey(2017) Ağralı, Semra; Uctuğ, Fehmi GörkemIn this study, we maximize the energy savings of a hypothetical household by choosing an optimal insulation material with its optimal thickness and also the optimal window type. We develop a nonlinear mixed integer optimization model that maximizes the net present value of the benefits obtained by insulation over the lifespan of the house. Savings are calculated based on the gains from the electricity usage for air conditioning during cooling-required days and the fuel usage for heaters in heating-required days. The heat transfer calculations consider conductive, convective, and radiative components simultaneously. The optimization model takes the climate conditions of the region where the house is located, the consumer's desired indoor temperature, and the properties of the insulation options; then, it returns a combination of selected insulation materials with its optimum thickness and window type as output. We applied the optimization model developed to hypothetical houses in four different climatic regions of Turkey for different lifespans. For all reasonable lifespans, the model choses stonewool as the ideal insulation material. For high interest rates, single windows or double-glazed windows are preferable, but as the interest rate decreases and the net present value of the energy-savings increases, the model prefers triple-glazed windows as the ideal material. Erzurum, a city in climatic region 4, characterized by very cold winters and cool summers, was found to require the highest optimum insulation thickness, and the economic return resulting from the above-mentioned energy-saving actions was also found to be the highest in the case of Erzurum. In all the regions, the energy-saving investments were found to be feasible via applying the feasibility assessment techniques of net present value and payback period. The model developed in this study is applicable to any household as long as the required input data are available. Published by AIP Publishing.Master Thesis Predicttion of Brent Oil Spot Prices Using Country Based Inventory and Trading Data(MEF Üniversitesi, Fen Bilimleri Enstitüsü, 2019) Usta, İsmail Batur; Ağralı, SemraCrude oil price forecasting has been the focus of numerous authorities, yet the task still persists on being a challenging one. The extremely volatile nature of oil market and high number of active players in it makes establishing a solid forecasting model that is constantly relevant to time very difficult. Recent advancements on data technologies, mainly ever-increasing computing power and trending big data technologies allowed new approaches to be born. From online learners to natural language processing, advanced data analytics models were employed with the help of easily accessible and diverse data. This project is an attempt on making use of such available data in order to forecast Brent oil spot price. By using monthly country by country inventory, trading and economic data, strong drivers of crude price was explored. The data used in this project comes from various sources and in multiple formats, with the final merged data frame has over 17000 observations and contains information on 86 countries. To enhance prediction power, a specialized learner is fit on each country individually and then the predictions are accumulated and filtered before outputting a single prediction. Compared to a single predictor, this approach enhanced the predictive power of the algorithm by adapting to dynamics of each country.Article Citation - WoS: 61Citation - Scopus: 65Carbon Price Forecasting Models Based on Big Data Analytics(Taylor and Francis Ltd., 2019) Çanakoğlu, Ethem; Ağralı, Semra; Yahşi, MustafaAfter the establishment of the European Union's Emissions Trading System (EU-ETS) carbon pricing attracted many researchers. This paper aims to develop a prediction model that anticipates future carbon prices given a real-world data set. We treat the carbon pricing issue as part of big data analytics to achieve this goal. We apply three fundamental methodologies to characterize the carbon price. First method is the artificial neural network, which mimics the principle of human brain to process relevant data. As a second approach, we apply the decision tree algorithm. This algorithm is structured through making multiple binary decisions, and it is mostly used for classification. We employ two different decision tree algorithms, namely traditional and conditional, to determine the type of decision tree that gives better results in terms of prediction. Finally, we exploit the random forest, which is a more complex algorithm compared to the decision tree. Similar to the decision tree, we test both traditional and conditional random forest algorithms to analyze their performances. We use Brent crude futures, coal, electricity and natural gas prices, and DAX and S&P Clean Energy Index as explanatory variables. We analyze the variables' effects on carbon price forecasting. According to our results, S&P Clean Energy Index is the most influential variable in explaining the changes in carbon price, followed by DAX Index and coal price. Moreover, we conclude that the traditional random forest is the best algorithm based on all indicators. We provide the details of these methods and their comparisons.Article Citation - WoS: 49Citation - Scopus: 56An Optimization Model for Carbon Capture & Storage/Utilization Vs. Carbon Trading: a Case Study of Fossil-Fired Power Plants in Turkey(2018) Uctug, Fehmi Görkem; Ağralı, Semra; Türkmen, Burçin AtılganWe consider fossil-fired power plants that operate in an environment where a cap and trade system is in operation. These plants need to choose between carbon capture and storage (CCS), carbon capture and utilization (CCU), or carbon trading in order to obey emissions limits enforced by the government. We develop a mixed-integer programming model that decides on the capacities of carbon capture units, if it is optimal to install them, the transportation network that needs to be built for transporting the carbon captured, and the locations of storage sites, if they are decided to be built. Main restrictions on the system are the minimum and maximum capacities of the different parts of the pipeline network, the amount of carbon that can be sold to companies for utilization, and the capacities on the storage sites. Under these restrictions, the model aims to minimize the net present value of the sum of the costs associated with installation and operation of the carbon capture unit and the transportation of carbon, the storage cost in case of CCS, the cost (or revenue) that results from the emissions trading system, and finally the negative revenue of selling the carbon to other entities for utilization. We implement the model on General Algebraic Modeling System (GAMS) by using data associated with two coal-fired power plants located in different regions of Turkey. We choose enhanced oil recovery (EOR) as the process in which carbon would be utilized. The results show that CCU is preferable to CCS as long as there is sufficient demand in the EOR market. The distance between the location of emission and location of utilization/storage, and the capacity limits on the pipes are an important factor in deciding between carbon capture and carbon trading. At carbon prices over $15/ton, carbon capture becomes preferable to carbon trading. These results show that as far as Turkey is concerned, CCU should be prioritized as a means of reducing nationwide carbon emissions in an environmentally and economically rewarding manner. The model developed in this study is generic, and it can be applied to any industry at any location, as long as the required inputs are available. (C) 2018 Elsevier Ltd. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1A Decomposition Algorithm for Single and Multiobjective Integrated Market Selection and Production Planning(Informs, 2023) van den Heuvel, Wilco; Ağralı, Semra; Taşkın, Z. CanerWe study an integrated market selection and production planning problem. There is a set of markets with deterministic demand, and each market has a certain revenue that is obtained if the market's demand is satisfied throughout a planning horizon. The demand is satisfied with a production scheme that has a lot-sizing structure. The problem is to decide on which markets' demand to satisfy and plan the production simultaneously. We consider both single and multiobjective settings. The single objective problem maximizes the profit, whereas the multiobjective problem includes the maximization of the revenue and the minimization of the production cost objectives. We develop a decomposition-based exact solution algorithm for the single objective setting and show how it can be used in a proposed three-phase algorithm for the multiobjective setting. The master problem chooses a subset of markets, and the subproblem calculates an optimal production plan to satisfy the selected markets' demand. We investigate the subproblem from a cooperative game theory perspective to devise cuts and strengthen them based on lifting. We also propose a set of valid inequalities and preprocessing rules to improve the proposed algorithm. We test the efficacy of our solution method over a suite of problem instances and show that our algorithm substantially decreases solution times for all problem instances.Article Citation - WoS: 1Citation - Scopus: 2Simple Nonlinear Optimization-Based Selection of Insulation Material and Window Type in Turkey: Effect of Heating and Cooling Base Temperatures(2017) Ağralı, Semra; Uçtuğ, Fehmi GörkemThe energy-savings of four hypothetical households in different climatic regions of Turkey were calculated via a nonlinear mixed integer optimization model. The ideal insulation material, its optimum thickness, and the ideal window type were determined. The standard degree days method was used with five different base temperatures for heating and five different base temperatures for cooling. The climatic conditions of the region, the properties of the insulation options, the unit price of fuel and electricity and the base temperature are used as model inputs, whereas the combination of selected insulation material with its optimum thickness and window type are given as model outputs. Stone Wool was found to be the ideal wall insulation material in all scenarios. The optimum window type was found to depend on the heating or cooling requirements of the house, as well as the lifetime of insulation. The region where the energy saving actions are deemed most feasible has been identified as Erzurum (Region 4), followed by Antalya (Region 1). Finally, the effect of changing the base temperature on energy savings was investigated and the results showed that an approximate average increase of $15/degrees C in annual savings is possible. Our model can be used by any prospective home-owner who would like to maximize their energy savings.Conference Object A Mathematical Programming-Based Approach for an Energy Investment Planning of a Private Company(2017) Ağralı, Semra...

