Mention Detection in Turkish Coreference Resolution

dc.contributor.author Demir, Seniz
dc.contributor.author Akdag, Hanifi Ibrahim
dc.date.accessioned 2024-11-05T19:50:45Z
dc.date.available 2024-11-05T19:50:45Z
dc.date.issued 2024
dc.description.abstract A crucial step in understanding natural language is detecting mentions that refer to real-world entities in a text and correctly identifying their boundaries. Mention detection is commonly considered a preprocessing step in coreference resolution which is shown to be helpful in several language processing applications such as machine translation and text summarization. Despite recent efforts on Turkish coreference resolution, no standalone neural solution to mention detection has been proposed yet. In this article, we present two models designed for detecting Turkish mentions by using feed-forward neural networks. Both models extract all spans up to a fixed length from input text as candidates and classify them as mentions or not mentions. The models differ in terms of how candidate text spans are represented. The first model represents a span by focusing on its first and last words, whereas the representation also covers the preceding and proceeding words of a span in the second model. Mention span representations are formed by using contextual embeddings, part-of-speech embeddings, and named-entity embeddings of words in interest where contextual embeddings are obtained from pretrained Turkish language models. In our evaluation studies, we not only assess the impact of mention representation strategies on system performance but also demonstrate the usability of different pretrained language models in resolution task. We argue that our work provides useful insights to the existing literature and the first step in understanding the effectiveness of neural architectures in Turkish mention detection.
dc.identifier.doi 10.55730/1300-0632.4095
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.scopus 2-s2.0-85205146511
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1264635/mention-detection-in-turkish-coreference-resolution
dc.identifier.uri https://doi.org/10.55730/1300-0632.4095
dc.identifier.uri https://hdl.handle.net/20.500.11779/2402
dc.language.iso en
dc.publisher Tubitak Scientific & Technological Research Council Turkey
dc.relation.ispartof Turkish Journal of Electrical Engineering and Computer Sciences
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Coreference resolution
dc.subject Mention detection
dc.subject Neural network
dc.subject Language model
dc.subject Turkish
dc.title Mention Detection in Turkish Coreference Resolution
dc.type Article
dspace.entity.type Publication
gdc.author.institutional Demir, Şeniz
gdc.author.institutional Akdağ, Hanifi İbrahim
gdc.author.scopusid 14044928200
gdc.author.scopusid 59346454800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 697
gdc.description.issue 5
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q2
gdc.description.startpage 682
gdc.description.volume 32
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4402765423
gdc.identifier.trdizinid 1264635
gdc.identifier.wos WOS:001321123900002
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.15
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.publishedmonth Eylül
gdc.scopus.citedcount 0
gdc.virtual.author Demir, Şeniz
gdc.wos.citedcount 0
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication 93fa0200-13f7-446a-bdc2-118401cab062
relation.isAuthorOfPublication.latestForDiscovery 93fa0200-13f7-446a-bdc2-118401cab062
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mention detection in Turkish coreference resolution.pdf
Size:
462.21 KB
Format:
Adobe Portable Document Format