Determination of Alzheimer's Disease Levels by Ordinal Logistic Regression and Artificial Learning Algorithms

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

This study compares artificial learning algorithms and logistic regression models in determining different levels of Alzheimer's disease (AD). The research uses demographic, genetic, and neurocognitive inventory results obtained from the National Alzheimer's Coordination Center (NACC) database, along with brain volume/thickness measurements derived from MRI scanners. Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM models were employed to determine the 4 different ordinal levels of AD. Although there were similarities between the accuracy rate, F1 score, AUC value, and sensitivity, specificity, and precision performance measures of each class, the highest classification rate was achieved by the Random Forest model where the oversampling was not applied. (F1 score: 0.86; accuracy: 0.86 and AUC: 0.95). The outputs of the model with the best performance were explained with the SHAP (SHapley Additive exPlanations) method. These findings indicate that non-invasive markers and artificial learning models can be used effectively in early diagnosis and decision support systems to predict different levels of Alzheimer's disease.

Description

Keywords

Alzheimer'S Disease, Artificial Intelligence, National Alzheimer'S Coordinating Center

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY

Volume

Issue

Start Page

1

End Page

4
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 3

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo