Determination of Alzheimer's Disease Levels by Ordinal Logistic Regression and Artificial Learning Algorithms

dc.contributor.author Bulut, Nurgül
dc.contributor.author Çakar, Tuna
dc.contributor.author Arslan, Ilker
dc.contributor.author Akinci, Zeynep Karaoglu
dc.contributor.author Oner, Kevser Setenay
dc.date.accessioned 2024-09-08T16:52:57Z
dc.date.available 2024-09-08T16:52:57Z
dc.date.issued 2024
dc.description.abstract This study compares artificial learning algorithms and logistic regression models in determining different levels of Alzheimer's disease (AD). The research uses demographic, genetic, and neurocognitive inventory results obtained from the National Alzheimer's Coordination Center (NACC) database, along with brain volume/thickness measurements derived from MRI scanners. Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM models were employed to determine the 4 different ordinal levels of AD. Although there were similarities between the accuracy rate, F1 score, AUC value, and sensitivity, specificity, and precision performance measures of each class, the highest classification rate was achieved by the Random Forest model where the oversampling was not applied. (F1 score: 0.86; accuracy: 0.86 and AUC: 0.95). The outputs of the model with the best performance were explained with the SHAP (SHapley Additive exPlanations) method. These findings indicate that non-invasive markers and artificial learning models can be used effectively in early diagnosis and decision support systems to predict different levels of Alzheimer's disease.
dc.identifier.doi 10.1109/SIU61531.2024.10600935
dc.identifier.isbn 9798350388978
dc.identifier.isbn 9798350388961
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85200842141
dc.identifier.uri https://hdl.handle.net/20.500.11779/2333
dc.language.iso tr
dc.publisher Ieee
dc.relation.ispartof 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Alzheimer'S Disease
dc.subject Artificial Intelligence
dc.subject National Alzheimer'S Coordinating Center
dc.title Determination of Alzheimer's Disease Levels by Ordinal Logistic Regression and Artificial Learning Algorithms
dc.title.alternative Alzheimer Hastalığı Seviyelerinin Sıralı Lojistik Regresyon ve Yapay Öğrenme Algoritmaları Yöntemiyle Belirlenmesi
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.author.wosid Bulut, Nurgul/AAG-6965-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4400908739
gdc.identifier.wos WOS:001297894700172
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.14
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.publishedmonth Mayıs
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.citedcount 0
gdc.wos.publishedmonth Mayis
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files