Determination of Alzheimer's Disease Levels by Ordinal Logistic Regression and Artificial Learning Algorithms
| dc.contributor.author | Bulut, Nurgül | |
| dc.contributor.author | Çakar, Tuna | |
| dc.contributor.author | Arslan, Ilker | |
| dc.contributor.author | Akinci, Zeynep Karaoglu | |
| dc.contributor.author | Oner, Kevser Setenay | |
| dc.date.accessioned | 2024-09-08T16:52:57Z | |
| dc.date.available | 2024-09-08T16:52:57Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This study compares artificial learning algorithms and logistic regression models in determining different levels of Alzheimer's disease (AD). The research uses demographic, genetic, and neurocognitive inventory results obtained from the National Alzheimer's Coordination Center (NACC) database, along with brain volume/thickness measurements derived from MRI scanners. Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM models were employed to determine the 4 different ordinal levels of AD. Although there were similarities between the accuracy rate, F1 score, AUC value, and sensitivity, specificity, and precision performance measures of each class, the highest classification rate was achieved by the Random Forest model where the oversampling was not applied. (F1 score: 0.86; accuracy: 0.86 and AUC: 0.95). The outputs of the model with the best performance were explained with the SHAP (SHapley Additive exPlanations) method. These findings indicate that non-invasive markers and artificial learning models can be used effectively in early diagnosis and decision support systems to predict different levels of Alzheimer's disease. | |
| dc.identifier.doi | 10.1109/SIU61531.2024.10600935 | |
| dc.identifier.isbn | 9798350388978 | |
| dc.identifier.isbn | 9798350388961 | |
| dc.identifier.issn | 2165-0608 | |
| dc.identifier.scopus | 2-s2.0-85200842141 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/2333 | |
| dc.language.iso | tr | |
| dc.publisher | Ieee | |
| dc.relation.ispartof | 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY | |
| dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Alzheimer'S Disease | |
| dc.subject | Artificial Intelligence | |
| dc.subject | National Alzheimer'S Coordinating Center | |
| dc.title | Determination of Alzheimer's Disease Levels by Ordinal Logistic Regression and Artificial Learning Algorithms | |
| dc.title.alternative | Alzheimer Hastalığı Seviyelerinin Sıralı Lojistik Regresyon ve Yapay Öğrenme Algoritmaları Yöntemiyle Belirlenmesi | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.id | Tuna Çakar / 0000-0001-8594-7399 | |
| gdc.author.institutional | Çakar, Tuna | |
| gdc.author.wosid | Bulut, Nurgul/AAG-6965-2019 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü Bölümü | |
| gdc.description.endpage | 4 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4400908739 | |
| gdc.identifier.wos | WOS:001297894700172 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.9478422E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.14 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.publishedmonth | Mayıs | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Çakar, Tuna | |
| gdc.wos.citedcount | 0 | |
| gdc.wos.publishedmonth | Mayis | |
| gdc.yokperiod | YÖK - 2023-24 | |
| relation.isAuthorOfPublication | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isAuthorOfPublication.latestForDiscovery | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 |
