Artificial Intelligence Driven Multivariate Time Series Analysis of Network Traffic Prediction
| dc.contributor.author | Filiz, G. | |
| dc.contributor.author | Yıldız, A. | |
| dc.contributor.author | Kara, E. | |
| dc.contributor.author | Altıntaş, S. | |
| dc.contributor.author | Çakar, T. | |
| dc.date.accessioned | 2025-02-05T18:54:19Z | |
| dc.date.available | 2025-02-05T18:54:19Z | |
| dc.date.issued | 2024 | |
| dc.description | IEEE SMC; IEEE Turkiye Section | |
| dc.description.abstract | The primary objective of this research is to employ artificial intelligence, machine learning, and neural networks in order to construct a network traffic prediction model. The analysis of network traffic data obtained from a digital media and entertainment provider operating in Turkey is conducted through the application of multivariate time-series analysis techniques in order to get insights into the temporal patterns and trends. In model development, Vector Autoregression (VAR), Vector Error Correction Model (VECM), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) algorithms have been utilized. LSTM and GRU models have performed better with low Mean Absolute Percentage Error (MAPE) and high R-squared Score (R2). LSTM model has reached 0.98 R2 and 8.95% MAPE. These results indicate that the models can be utilized in network management optimization as resource allocation, congestion detection, anomaly detection, and quality of service. © 2024 IEEE. | |
| dc.description.sponsorship | DSmart R&D Center | |
| dc.identifier.doi | 10.1109/ASYU62119.2024.10756993 | |
| dc.identifier.isbn | 9798350379433 | |
| dc.identifier.scopus | 2-s2.0-85213347300 | |
| dc.identifier.uri | https://doi.org/10.1109/ASYU62119.2024.10756993 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/2496 | |
| dc.language.iso | en | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
| dc.relation.ispartof | 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562 | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Artificial Intelligence | |
| dc.subject | Long-Short Term Memory | |
| dc.subject | Machine Learning | |
| dc.subject | Network Traffic Forecasting | |
| dc.subject | Neural Networks | |
| dc.title | Artificial Intelligence Driven Multivariate Time Series Analysis of Network Traffic Prediction | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Filiz, Gözde | |
| gdc.author.institutional | Çakar, Tuna | |
| gdc.author.scopusid | 58634073400 | |
| gdc.author.scopusid | 58876694800 | |
| gdc.author.scopusid | 58876482000 | |
| gdc.author.scopusid | 59490536100 | |
| gdc.author.scopusid | 56329345400 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| gdc.description.endpage | 4 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.startpage | 1 | |
| gdc.identifier.openalex | W4406267530 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.9478422E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.29 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 9 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.publishedmonth | Temmuz | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Çakar, Tuna | |
| gdc.wos.publishedmonth | Temmuz | |
| gdc.yokperiod | YÖK - 2023-24 | |
| relation.isAuthorOfPublication | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isAuthorOfPublication.latestForDiscovery | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Artificial_Intelligence_Driven_Multivariate_Time_Series_Analysis_of_Network_Traffic_Prediction.pdf
- Size:
- 280.24 KB
- Format:
- Adobe Portable Document Format
