Artificial Intelligence Driven Multivariate Time Series Analysis of Network Traffic Prediction

dc.contributor.author Filiz, G.
dc.contributor.author Yıldız, A.
dc.contributor.author Kara, E.
dc.contributor.author Altıntaş, S.
dc.contributor.author Çakar, T.
dc.date.accessioned 2025-02-05T18:54:19Z
dc.date.available 2025-02-05T18:54:19Z
dc.date.issued 2024
dc.description IEEE SMC; IEEE Turkiye Section
dc.description.abstract The primary objective of this research is to employ artificial intelligence, machine learning, and neural networks in order to construct a network traffic prediction model. The analysis of network traffic data obtained from a digital media and entertainment provider operating in Turkey is conducted through the application of multivariate time-series analysis techniques in order to get insights into the temporal patterns and trends. In model development, Vector Autoregression (VAR), Vector Error Correction Model (VECM), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) algorithms have been utilized. LSTM and GRU models have performed better with low Mean Absolute Percentage Error (MAPE) and high R-squared Score (R2). LSTM model has reached 0.98 R2 and 8.95% MAPE. These results indicate that the models can be utilized in network management optimization as resource allocation, congestion detection, anomaly detection, and quality of service. © 2024 IEEE.
dc.description.sponsorship DSmart R&D Center
dc.identifier.doi 10.1109/ASYU62119.2024.10756993
dc.identifier.isbn 9798350379433
dc.identifier.scopus 2-s2.0-85213347300
dc.identifier.uri https://doi.org/10.1109/ASYU62119.2024.10756993
dc.identifier.uri https://hdl.handle.net/20.500.11779/2496
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Artificial Intelligence
dc.subject Long-Short Term Memory
dc.subject Machine Learning
dc.subject Network Traffic Forecasting
dc.subject Neural Networks
dc.title Artificial Intelligence Driven Multivariate Time Series Analysis of Network Traffic Prediction
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Filiz, Gözde
gdc.author.institutional Çakar, Tuna
gdc.author.scopusid 58634073400
gdc.author.scopusid 58876694800
gdc.author.scopusid 58876482000
gdc.author.scopusid 59490536100
gdc.author.scopusid 56329345400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.startpage 1
gdc.identifier.openalex W4406267530
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.29
gdc.opencitations.count 0
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 1
gdc.publishedmonth Temmuz
gdc.scopus.citedcount 1
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Temmuz
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Artificial_Intelligence_Driven_Multivariate_Time_Series_Analysis_of_Network_Traffic_Prediction.pdf
Size:
280.24 KB
Format:
Adobe Portable Document Format