Humpback Whale Indentification With Convolutional Neural Networks

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

MEF Üniversitesi, Fen Bilimleri Enstitüsü

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The migration patterns of humpback whales are tracked with conventional photoidentification techniques for decades. The distinct markings on whale flukes serve as unique fingerprints for these creatures. This study aims to identify humpback whales according to their fluke images using ResNET, a deep neural network architecture to help the conservation efforts for this endangered species by automatizing the process. We experimented with different train/test split schemes and initializations to obtain the best classifying model. Although we were limited with a small sized training set of 200 images, using state-of-the-art image processing and data augmentation methods we obtained a high accuracy of 0.94 for 11 distinct whales. This project is served as an friendly interface to dive deep into the field of image recognition with Convolutional Neural Networks.
Kambur balinaların göç kalıpları, onlarca yıldır geleneksel fotoğraf tanımlama teknikleri ile izlenmektedir. Balina kuyrukları üzerindeki belirgin işaretler, bu canlılar için özgün parmak izleri gibi davranmaktadır. Tanıma sürecini otomatikleştirerek, nesli tehlikede olan kambur balinaların korunma çabalarına katkıda bulunmayı hedefleyen bu çalışmada, bir derin sinir ağı mimarisi olan ResNET ile kuyruk görsellerine göre balina tanıma hedeflenmiştir. En iyi sınıflandırma modelini elde etmek için farklı eğitim/test ayrımı şemaları ve değişik başlangıç noktalari ile deneyler yapılmıştır. 200 görüntüden oluşan küçük bir eğitim seti ile sınırlı kalınmasına rağmen, ileri görüntü işleme ve veri artırma yöntemlerini kullanılarak 11 farklı balina için 0.94 yüksek başarımı edilebilmiştir. Bu proje, Konvolüsyonel Sinir Ağları ile görüntü tanıma alanına derinlemesine dalmak için dostça bir arayüz olarak hizmet etmiştir.

Description

Keywords

Convolutional Neural Networks (CNN), Humpback Whale, Artificial Neural Networks (ANN), Image Classification, Photo-identification, ResNET, Evrişimli Sinir Ağları (ESA), Kambur Balina, Yapay Sinir Ağları (YSA), Görüntü Sınıflandırma, Foto-tanımlama

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Can, D. (2018). Humpback whale ındentification with convolutional neural networks, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye

WoS Q

N/A

Scopus Q

N/A

Source

Volume

Issue

Start Page

End Page

Page Views

152

checked on Dec 14, 2025

Downloads

167

checked on Dec 14, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo