Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1171
Title: Humpback Whale Indentification With Convolutional Neural Networks
Other Titles: Evrişimli sinir ağları kullanarak kambur balina tanıma
Authors: Can, Duygu
Advisors: Arslan, Şuayb Ş.
Keywords: Convolutional Neural Networks (CNN)
Humpback Whale
Artificial Neural Networks (ANN)
Image Classification
Photo-identification
ResNET
Evrişimli Sinir Ağları (ESA)
Kambur Balina
Yapay Sinir Ağları (YSA)
Görüntü Sınıflandırma
Foto-tanımlama
Publisher: MEF Üniversitesi, Fen Bilimleri Enstitüsü
Source: Can, D. (2018). Humpback whale ındentification with convolutional neural networks, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
Abstract: The migration patterns of humpback whales are tracked with conventional photoidentification techniques for decades. The distinct markings on whale flukes serve as unique fingerprints for these creatures. This study aims to identify humpback whales according to their fluke images using ResNET, a deep neural network architecture to help the conservation efforts for this endangered species by automatizing the process. We experimented with different train/test split schemes and initializations to obtain the best classifying model. Although we were limited with a small sized training set of 200 images, using state-of-the-art image processing and data augmentation methods we obtained a high accuracy of 0.94 for 11 distinct whales. This project is served as an friendly interface to dive deep into the field of image recognition with Convolutional Neural Networks.
Kambur balinaların göç kalıpları, onlarca yıldır geleneksel fotoğraf tanımlama teknikleri ile izlenmektedir. Balina kuyrukları üzerindeki belirgin işaretler, bu canlılar için özgün parmak izleri gibi davranmaktadır. Tanıma sürecini otomatikleştirerek, nesli tehlikede olan kambur balinaların korunma çabalarına katkıda bulunmayı hedefleyen bu çalışmada, bir derin sinir ağı mimarisi olan ResNET ile kuyruk görsellerine göre balina tanıma hedeflenmiştir. En iyi sınıflandırma modelini elde etmek için farklı eğitim/test ayrımı şemaları ve değişik başlangıç noktalari ile deneyler yapılmıştır. 200 görüntüden oluşan küçük bir eğitim seti ile sınırlı kalınmasına rağmen, ileri görüntü işleme ve veri artırma yöntemlerini kullanılarak 11 farklı balina için 0.94 yüksek başarımı edilebilmiştir. Bu proje, Konvolüsyonel Sinir Ağları ile görüntü tanıma alanına derinlemesine dalmak için dostça bir arayüz olarak hizmet etmiştir.
URI: https://hdl.handle.net/20.500.11779/1171
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu

Files in This Item:
File Description SizeFormat 
Duygu Can.pdfYL-Proje Dosyası1.67 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Page view(s)

36
checked on Jan 13, 2025

Download(s)

24
checked on Jan 13, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.