01. Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed
Permanent URI for this communityhttps://hdl.handle.net/20.500.11779/255
Browse
Browsing 01. Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed by Journal "2019 27th Signal processing and communications applications conference (SIU)"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Conference Object Citation - WoS: 3Citation - Scopus: 5Negatif Olmayan Gürültü Giderici Değişimli Oto-kodlayıcılar Kullanarak Tek Kanaldan Kaynak Ayrıştırma için Zayıf Etiket Denetimi(IEEE, 2019) Karamatlı, Ertuğ; Cemgil, Ali Taylan; Kırbız, SerapDerin öğrenme modelleri, büyük miktarda etiketlenmiş veri bulunduğunda kaynak ayrıştırmada çok başarılı olmaktadır. Bununla birlikte, dikkatlice etiketlenmiş veri kümelerine erişim her zaman mümkün olmamaktadır. Bu bildiride, kısa konuşma karışımlarını ayrıştırmayı öğrenmek için kaynak işaretlerini değil de sadece sınıf bilgisini kullanan zayıf bir denetim önerilmektedir. Negatif olmayan bir modeldeki her bir sınıfla degişimsel bir otomatik kodlayıcıyı (VAE) ilişkilendirilmektedir. Derin evrisimsel VAE’lerin, herhangi bir kaynak sinyaline ihtiyaç duymadan, bir ses karı¸sımındaki karmasık isaretleri kestirmek için önsel bir model sundugu gösterilmektedir. Ayrıstırma sonuçlarının kaynak isaret denetimiyle esit düzeyde oldugu gösterilmektedir.