Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by browse.metadata.publisher "Elsevier Ltd"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 6Computational Alloy Design, Synthesis, and Characterization of Wmonbvcrx Refractory High Entropy Alloy Prepared by Vacuum Arc Melting(Elsevier Ltd, 2024) Alkraidi, A.B.N.; Mansoor, M.; Boztemur, B.; Gökçe, H.; Kaya, F.; Yıldırım, C.; Öveçoğlu, M.L.Prior investigations have demonstrated enhanced mechanical properties, such as hardness and wear resistance, through high-entropy alloy designs that contain refractory metals. We propose the WMoNbVCrx alloy phase space as a single-phase BCC-structured, hard, and refractory high-entropy alloy for the first time. The WMoNbVCrx alloy (x = 0, 0.25, 0.5, 0.75, and 1) system is investigated computationally through CALPHAD and DFT for the equimolar and non-equimolar compositional phase spaces and synthesized through vacuum arc melting. The DFT calculations demonstrated the excellence of specific non-equimolar compositional spaces. It was found that stoichiometries rich in W and poor in V are exceptionally hard, while those rich in V and poor in W demonstrate unprecedented toughness, as determined by the ductility descriptor (Pugh's Ratio). The computational analysis shows the significance of microstructures that contain both (W-rich and W-poor) solid solution, where a synergy between hardness and toughness is created. Our experimental synthesis using vacuum arc melting demonstrated the possibility of successfully producing these alloys with W-rich (dendritic) and W-poor (interdendritic) solid solution regions, starting from elemental powders. The introduction of chromium (Cr) resulted in enhanced microhardness and wear resistance. The peak microhardness was attained when 0.5 moles of Cr were added, reaching 7.03 ±0.24 GPa, accompanied by the least wear volume loss. The produced alloys were found to align with the computationally predicted-designed alloys in terms of the hardness and Young's modulus trends that they follow. This comprehensive investigation underscores the synergistic application of CALPHAD and DFT techniques in the tailored design of novel high-entropy alloys, explaining their synthesis, structural correspondence, and the pivotal role of Cr in enhancing the mechanical properties of these alloys. © 2024 Elsevier B.V.Article Citation - WoS: 38Citation - Scopus: 38Development of a Multigenerational Energy System for Clean Hydrogen Generation(Elsevier Ltd, 2021) Dinçer, İbrahim; Karapekmez, ArasThe existing fueling options for many power plants are still dependent primarily on fossil fuel resources, which in return cause serious local and global environmental problems. Therefore, in order to reduce the detrimental effects of greenhouse gas emissions, the use of cleaner production methods has been accelerated to develop and implement environmentally- friendly energy systems. In this regard, the combination of renewable energy systems and hydrogen production methods will definitely play a crucial role in the energy sector’s transition to a carbon-free production. In order to make the use of geothermal energy cleaner and more sustainable, some obstacles need to be eliminated. Most importantly, the hydrogen sulfide emissions may cause serious concerns in public acceptance of geothermal power plants. In the current study, solar, wind and geothermal energy resources are integrated to develop an integrated renewable-based energy system with a key objective of higher environmental and system performance. The underlying motivation is to propose a model which consists of a hydrogen sulfide abatement unit and an electrolyzer to produce hydrogen from hydrogen sulfide and hence eliminites the hydrogen sulfide emissions. A detailed thermodynamic analysis is carried out using Engineering Equation solver (EES) software. In addition, the effects of key design parameters and operating conditions (such as wind inlet speed and average hourly solar radiation) are analyzed, and their effects on the system overall performance are investigated. When 60 kg/s of geothermal fluid is supplied to the designed system, assuming that the NCG composition is equal to 15%, 0.7388 kg hydrogen sulfide will be emitted and 0.0433 kg hydrogen will be produced per second. The first-law (energy) and second-law (exergy) efficiencies are found to be 52.97% and 55.69% respectively.
